Abstract and Applied Analysis

Iterative Algorithms for General Multivalued Variational Inequalities

Yonghong Yao, Muhammad Aslam Noor, Yeong-Cheng Liou, and Shin Min Kang

Full-text: Open access

Abstract

We introduce and study some new classes of variational inequalities and the Wiener-Hopf equations. Using essentially the projection technique, we establish the equivalence between these problems. This equivalence is used to suggest and analyze some iterative methods for solving the general multivalued variational in equalities in conjunction with nonexpansive mappings. We prove a strong convergence result for finding the common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the general multivalued variational inequalities under some mild conditions. Several special cases are also discussed.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 768272, 10 pages.

Dates
First available in Project Euclid: 15 February 2012

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1329337686

Digital Object Identifier
doi:10.1155/2012/768272

Mathematical Reviews number (MathSciNet)
MR2872295

Zentralblatt MATH identifier
1232.49012

Citation

Yao, Yonghong; Noor, Muhammad Aslam; Liou, Yeong-Cheng; Kang, Shin Min. Iterative Algorithms for General Multivalued Variational Inequalities. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 768272, 10 pages. doi:10.1155/2012/768272. https://projecteuclid.org/euclid.aaa/1329337686


Export citation

References

  • L. C. Ceng, Q. H. Ansari, and J. C. Yao, “Relaxed extragradient iterative methods for variational inequalities,” Applied Mathematics and Computation, vol. 218, no. 3, pp. 1112–1123, 2011.
  • L. C. Ceng, M. Teboulle, and J. C. Yao, “Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems,” Journal of Optimization Theory and Applications, vol. 146, no. 1, pp. 19–31, 2010.
  • S. S. Chang, H. W. J. Lee, C. K. Chan, and J. A. Liu, “A new method for solving a system of generalized nonlinear variational inequalities in Banach spaces,” Applied Mathematics and Computation, vol. 217, no. 16, pp. 6830–6837, 2011.
  • F. Cianciaruso, G. Marino, L. Muglia, and Y. Yao, “On a two-step algorithm for hierarchical fixed point problems and variational inequalities,” Journal of Inequalities and Applications, vol. 2009, Article ID 208692, 13 pages, 2009.
  • F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. 1-2 of Springer Series in Operations Research, Springer, New York, NY, USA, 2003.
  • R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, New York, 1984.
  • B. S. He, “A new method for a class of linear variational inequalities,” Mathematical Programming, vol. 66, no. 2, pp. 137–144, 1994.
  • A. N. Iusem and B. F. Svaiter, “A variant of Korpelevich's method for variational inequalities with a new search strategy,” Optimization, vol. 42, no. 4, pp. 309–321, 1997.
  • P. Jaillet, D. Lamberton, and B. Lapeyre, “Variational inequalities and the pricing of American options,” Acta Applicandae Mathematicae, vol. 21, no. 3, pp. 263–289, 1990.
  • E. N. Khobotov, “Modification of the extra-gradient method for solving variational inequalities and certain optimization problems,” USSR Computational Mathematics and Mathematical Physics, vol. 27, no. 5, pp. 120–127, 1987.
  • G. M. Korpelevich, “An extragradient method for finding saddle points and for other problems,” Ekonomika i Matematicheskie Metody, vol. 12, no. 4, pp. 747–756, 1976.
  • P. Kumam, N. Petrot, and R. Wangkeeree, “Existence and iterative approximation of solutions of generalized mixed quasi-variational-like inequality problem in Banach spaces,” Applied Mathematics and Computation, vol. 217, no. 18, pp. 7496–7503, 2011.
  • X. Lu, H. K. Xu, and X. Yin, “Hybrid methods for a class of monotone variational inequalities,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 3-4, pp. 1032–1041, 2009.
  • G. Marino, L. Muglia, and Y. Yao, “Viscosity methods for common solutions of equilibrium and variationalčommentComment on ref. [14?]: Please update the information of this reference, if possible. inequality problems via multi-step iterative algorithms and common fixed points,” Nonlinear Analysis, Theory, Methods and Applications. In press.
  • M. A. Noor, On Variational Inequalities, Brunel University, London, UK, 1975.
  • M. A. Noor, “General variational inequalities,” Applied Mathematics Letters, vol. 1, no. 2, pp. 119–122, 1988.
  • M. A. Noor, “Wiener-Hopf equations and variational inequalities,” Journal of Optimization Theory and Applications, vol. 79, no. 1, pp. 197–206, 1993.
  • M. A. Noor, “Some developments in general variational inequalities,” Applied Mathematics and Computation, vol. 152, no. 1, pp. 199–277, 2004.
  • M. A. Noor, “Differentiable non-convex functions and general variational inequalities,” Applied Mathematics and Computation, vol. 199, no. 2, pp. 623–630, 2008.
  • M. A. Noor and E. A. Al-Said, “Wiener-Hopf equations technique for quasimonotone variational inequalities,” Journal of Optimization Theory and Applications, vol. 103, no. 3, pp. 705–714, 1999.
  • M. A. Noor and Z. Huang, “Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings,” Applied Mathematics and Computation, vol. 191, no. 2, pp. 504–510, 2007.
  • P. Shi, “Equivalence of variational inequalities with Wiener-Hopf equations,” Proceedings of the American Mathematical Society, vol. 111, no. 2, pp. 339–346, 1991.
  • M. V. Solodov and B. F. Svaiter, “A new projection method for variational inequality problems,” SIAM Journal on Control and Optimization, vol. 37, no. 3, pp. 765–776, 1999.
  • G. Stampacchia, “Formes bilineaires coercitives sur les ensembles convexes,” Comptes Rendus de l'Academie des Sciences, vol. 258, pp. 4413–4416, 1964.
  • R. U. Verma, “Projection methods, algorithms, and a new system of nonlinear variational inequalities,” Computers & Mathematics with Applications, vol. 41, no. 7-8, pp. 1025–1031, 2001.
  • H. K. Xu and T. H. Kim, “Convergence of hybrid steepest-descent methods for variational inequalities,” Journal of Optimization Theory and Applications, vol. 119, no. 1, pp. 185–201, 2003.
  • J. C. Yao, “Variational inequalities with generalized monotone operators,” Mathematics of Operations Research, vol. 19, no. 3, pp. 691–705, 1994.
  • Y. Yao, R. Chen, and H. K. Xu, “Schemes for finding minimum-norm solutions of variational inequalities,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 7-8, pp. 3447–3456, 2010.
  • Y. Yao, Y. C. Liou, and S. M. Kang, “Two-step projection methods for a čommentComment on ref. [29?]: Please update the information of this reference, if possible.system of variational inequality problems in Banach spaces,” Journal of Global Optimization. In press.
  • Y. Yao, M. A. Noor, and Y. C. Liou, “Strong convergence of a modified extra-gradient method to the 4 minimum-norm solution of variational inequalities,” Abstract and Applied Analysis, vol. 2012, Article ID 817436, 9 pages, 2012.
  • Y. Yao, M. A. Noor, K. I. Noor, Y. C. Liou, and H. Yaqoob, “Modified extragradient methods for a system of variational inequalities in Banach spaces,” Acta Applicandae Mathematicae, vol. 110, no. 3, pp. 1211–1224, 2010.
  • Y. Yao and N. Shahzad, “New methods with perturbations for non-expansive mappings in Hilbert 5 spaces,” Fixed Point Theory and Applications, vol. 2011, Article ID 79, 2011.
  • Y. Yao and N. Shahzad, “Strong convergence of a proximal čommentComment on ref. [33?]: Please update the information of this reference, if possible.point algorithm with general errors,” Optimization Letters. In press.