Abstract and Applied Analysis

A Bayesian Abstract Economy with a Measure Space of Agents

Monica Patriche

Full-text: Open access

Abstract

We define the model of an abstract economy with differential (asymmetric) information and a measure space of agents. We generalize N. C. Yannelis's result (2007), considering that each agent is characterised by a random preference correspondence instead of having a random utility function. We establish two different equilibrium existence results.

Article information

Source
Abstr. Appl. Anal., Volume 2009 (2009), Article ID 523619, 11 pages.

Dates
First available in Project Euclid: 16 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1268745599

Digital Object Identifier
doi:10.1155/2009/523619

Mathematical Reviews number (MathSciNet)
MR2572096

Zentralblatt MATH identifier
1176.91079

Citation

Patriche, Monica. A Bayesian Abstract Economy with a Measure Space of Agents. Abstr. Appl. Anal. 2009 (2009), Article ID 523619, 11 pages. doi:10.1155/2009/523619. https://projecteuclid.org/euclid.aaa/1268745599


Export citation

References

  • N. C. Yannelis, ``Debreu's social equilibrium theorem with asymmetric information and a continuum of agents,'' Economic Theory, vol. 38, no. 2, pp. 419--432, 2007.
  • R. Radner, ``Competitive equilibrium under uncertainty,'' Econometrica, vol. 36, pp. 31--58, 1968.
  • N. C. Yannelis, ``Set-valued function of two variables in economic theory,'' in Equilibrium Theory in Infinite Dimensional Spaces, M. A. Khan and N. C. Yannelis, Eds., Studies in Economic Theory, Springer, Berlin, Germany, 1991.
  • G. Debreu, ``A social equilibrium existence theorem,'' Proceedings of the National Academy of Sciences of the United States of America, vol. 38, pp. 886--893, 1952.
  • K. Fan, ``Fixed-point and minimax theorems in locally convex topological linear spaces,'' Proceedings of the National Academy of Sciences of the United States of America, vol. 38, no. 2, pp. 121--126, 1952.
  • G. Debreu, ``Integration of correspondences,'' in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, pp. 351--372, University of California Press, 1966.
  • R. J. Aumann, ``Integrals of set-valued functions,'' Journal of Mathematical Analysis and Applications, vol. 12, pp. 1--12, 1965.
  • E. J. Balder and N. C. Yannelis, ``Equilibrium in random and Bayesian games with a continuum of players,'' in Equilibrium Theory in Infinite Dimensional Spaces, M. A. Khan and N. C. Yannelis, Eds., Springer, New York, NY, USA, 1991.
  • N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, Wiley-Interscience, New York, NY, USA, 1958.