Open Access
December 2009 Purely Periodic Points of Complex Pisot Expansions
Masaki HAMA, Shunji ITO
Tokyo J. Math. 32(2): 517-535 (December 2009). DOI: 10.3836/tjm/1264170247

Abstract

Using a ``complex Pisot number'' $\lambda \in \mathbb{C}$ with $|\lambda|>1$, the numerical expansion $\sum_{j=-k}^{\infty}{a_j}/{\lambda^j}$ of a complex number, where each digit $a_j$ is chosen from some finite set $\Gamma$ of $\mathbb{Z}[\lambda]$, was established recently as an analogue of $\beta$-numeration system $\sum_{j=-k}^{\infty}{b_j}/{\beta^j}$ of a real number, where $b_j \in \{0, 1, \cdots, \lfloor\beta\rfloor\}$. In this paper, we give a necessary and sufficient condition for a complex number to have eventually or purely periodic complex Pisot expansion.

Citation

Download Citation

Masaki HAMA. Shunji ITO. "Purely Periodic Points of Complex Pisot Expansions." Tokyo J. Math. 32 (2) 517 - 535, December 2009. https://doi.org/10.3836/tjm/1264170247

Information

Published: December 2009
First available in Project Euclid: 22 January 2010

zbMATH: 1205.11114
MathSciNet: MR2589960
Digital Object Identifier: 10.3836/tjm/1264170247

Rights: Copyright © 2009 Publication Committee for the Tokyo Journal of Mathematics

Vol.32 • No. 2 • December 2009
Back to Top