Open Access
December 2009 Classification of Local Singularities on Torus Curves of Type $(2,5)$
Tokyo J. Math. 32(2): 313-348 (December 2009). DOI: 10.3836/tjm/1264170235


In this paper, we consider curves of degree 10 of torus type (2,5), $C:=\{f_5(x,y)^2+f_2(x,y)^5=0\}$. Assume that $f_2(0,0)=f_5(0,0)=0$. Then $O=(0,0)$ is a singular point of $C$ which is called an inner singularity. In this paper, we give a topological classification of singularities of $(C,O)$.


Download Citation

Masayuki KAWASHIMA. "Classification of Local Singularities on Torus Curves of Type $(2,5)$." Tokyo J. Math. 32 (2) 313 - 348, December 2009.


Published: December 2009
First available in Project Euclid: 22 January 2010

zbMATH: 1197.14025
MathSciNet: MR2589948
Digital Object Identifier: 10.3836/tjm/1264170235

Primary: 14H20
Secondary: 14H45

Rights: Copyright © 2009 Publication Committee for the Tokyo Journal of Mathematics

Vol.32 • No. 2 • December 2009
Back to Top