Translator Disclaimer
2013 GENERALIZED INTEGRATION OPERATORS BETWEEN BLOCH-TYPE SPACES AND $F(p,q,s)$ SPACES
Zhong Hua He, Guangfu Cao
Taiwanese J. Math. 17(4): 1211-1225 (2013). DOI: 10.11650/tjm.17.2013.2658

Abstract

Let $H(\mathbb{D})$ denote the space of all holomorphic functions on the unit disk $\mathbb{D}$ of $\mathbb{C}$. Let $\varphi$ be a holomorphic self-map of $\mathbb{D}$, $n$ be a positive integer and $g\in H(\mathbb{D})$. In this paper, we investigate the boundedness and compactness of a generalized integration operator $$ I^{(n)}_{g,\varphi}f(z) = \int^z_0 f^{(n)}(\varphi(\zeta)) g(\zeta) d\zeta,\ \ z \in \mathbb{D},$$ between Bloch-type spaces and $F(p,q,s)$ spaces.

Citation

Download Citation

Zhong Hua He. Guangfu Cao. "GENERALIZED INTEGRATION OPERATORS BETWEEN BLOCH-TYPE SPACES AND $F(p,q,s)$ SPACES." Taiwanese J. Math. 17 (4) 1211 - 1225, 2013. https://doi.org/10.11650/tjm.17.2013.2658

Information

Published: 2013
First available in Project Euclid: 10 July 2017

zbMATH: 1295.47046
MathSciNet: MR3085507
Digital Object Identifier: 10.11650/tjm.17.2013.2658

Subjects:
Primary: ‎30H05, 47G10

Rights: Copyright © 2013 The Mathematical Society of the Republic of China

JOURNAL ARTICLE
15 PAGES


SHARE
Vol.17 • No. 4 • 2013
Back to Top