Translator Disclaimer
2013 STRONG UNIQUENESS OF A CLASS OF BEST SIMULTANEOUS APPROXIMATION FROM RS-SETS IN NORMED SPACES
Xianfa Luo
Taiwanese J. Math. 17(1): 315-332 (2013). DOI: 10.11650/tjm.17.2013.2065

Abstract

This paper is concerned with a class of problem of best simultaneous approximations from $RS$-sets in Banach spaces $X$. It is shown that the best simultaneous approximations from an $RS$-set is strongly unique in the case when $X$ is a real Banach space, and strongly unique of order $\alpha \geq 2$ in the case when $X$ is a complex Banach space.

Citation

Download Citation

Xianfa Luo. "STRONG UNIQUENESS OF A CLASS OF BEST SIMULTANEOUS APPROXIMATION FROM RS-SETS IN NORMED SPACES." Taiwanese J. Math. 17 (1) 315 - 332, 2013. https://doi.org/10.11650/tjm.17.2013.2065

Information

Published: 2013
First available in Project Euclid: 10 July 2017

zbMATH: 1264.41019
MathSciNet: MR3028872
Digital Object Identifier: 10.11650/tjm.17.2013.2065

Subjects:
Primary: 41A28, 41A65

Rights: Copyright © 2013 The Mathematical Society of the Republic of China

JOURNAL ARTICLE
18 PAGES


SHARE
Vol.17 • No. 1 • 2013
Back to Top