August 2021 Euler sums of generalized alternating hyperharmonic numbers
Rusen Li
Rocky Mountain J. Math. 51(4): 1299-1313 (August 2021). DOI: 10.1216/rmj.2021.51.1299

Abstract

We define the notion of the generalized alternating hyperharmonic numbers, and show that Euler sums of the generalized alternating hyperharmonic numbers can be expressed in terms of linear combinations of classical (alternating) Euler sums.

Citation

Download Citation

Rusen Li. "Euler sums of generalized alternating hyperharmonic numbers." Rocky Mountain J. Math. 51 (4) 1299 - 1313, August 2021. https://doi.org/10.1216/rmj.2021.51.1299

Information

Received: 20 November 2020; Revised: 24 December 2020; Accepted: 28 December 2020; Published: August 2021
First available in Project Euclid: 5 August 2021

MathSciNet: MR4298848
zbMATH: 1497.11054
Digital Object Identifier: 10.1216/rmj.2021.51.1299

Subjects:
Primary: 11B37 , 11B68 , 11M06

Keywords: alternating Euler sums , Bernoulli–Faulhaber formula , combinatorial approach , generalized alternating hyperharmonic numbers

Rights: Copyright © 2021 Rocky Mountain Mathematics Consortium

Vol.51 • No. 4 • August 2021
Back to Top