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Abstract. We prove an old conjecture that relates the existence of
non-real eigenvalues of Sturm-Liouville Dirichlet problems on a fi-
nite interval to the non-existence of oscillation numbers of its real
eigenfunctions, [[6], p.104, Problems 3 and 5]. This extends to the
general case, a previous result in [1], [2] where it was shown that
the presence of even one pair of non-real eigenvalues implies the
non-existence of a positive eigenfunction (or ground state). We also
provide estimates on the Haupt and Richardson indices and Haupt
and Richardson numbers thereby complementing the original Sturm
oscillation theorem with the Haupt-Richardson oscillation theorem
discovered over 100 years ago with estimates on the missing oscilla-
tion numbers of the real eigenfunctions observed.
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1 Introduction

The classical Sturm-Liouville boundary problem is one of the oldest and
most important problems in applied mathematics. Its applications span
the earliest ones from vibrating strings and heat conduction to quantum
mechanics and beyond. The so-called problem with fixed ends (i.e., the

BCorresponding author. Email: angelo@math.carleton.ca

1

26 Apr 2024 05:21:14 PDT
240213-Mingarelli Version 2 - Submitted to Rocky Mountain J. Math.



homogeneous Dirichlet problem) is expressed most commonly by asking
for those values of λ ∈ C (called eigenvalues) such that the equation

Ly := −(p(x)y′)′ + q(x) y = λw(x)y, y(a) = 0 = y(b), (1.1)

has a nontrivial solution (called an eigenfunction) satisfying the bound-
ary conditions in (1.1). Motivated by its physical applications, in the
period from 1829-1840 both Sturm and Liouville, separately and jointly,
considered this question in the special cases where the coefficients p, q, r
are positive and continuous functions on [a, b] and proved the existence
of an infinite number of real eigenvalues that is bounded below, having
no finite point of accumulation (no complex eigenvalues), an oscillation
theorem for the eigenfunctions, and eventually an expansion theorem.

The spectrum of (1.1) comprises the collection of its eigenvalues. This
spectrum can vary dramatically as the sign conditions on the coefficients
are relaxed to the point where the whole complex plane can be the spec-
trum, [5]. For a brief history as to the development of the various cases
we refer the reader to [18].

Classically, the Sturm oscillation theorem states that if the eigenvalues
{λm} of (1.1) are ordered in an increasing fashion so that −∞ < λ0 < λ1 <
· · · < λm < · · · , and λm → ∞ as m → ∞, then for every natural number
n, an eigenfunction corresponding to an eigenvalue λn will have exactly
n zeros in (a, b). This result had various extensions to the so-called polar
and orthogonal cases (in older terminology) or left-definite and right-definite,
respectively, as they are known today. The case where w(x) changes sign
is commonly known as an indefinite case but, unfortunately, this can also
include the polar case. Thus, in keeping with older terminology, we use
the term non-definite for the general case where both q, w change their
sign on [a, b] and p(x) > 0 there. Specifically, (1.1) is in the non-definite
case if each of the quadratic forms∫ b

a
(p|y′|2 + q|y|2) dx,

∫ b

a
w|y|2 dx,

are sign indefinite on the space of all functions y such that y, py′, (p(x) >
0 a.e.) are absolutely continuous and satisfy the boundary conditions in
(1.1).
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The qualitative and spectral theory theory behind the non-definite case is
still not completely understood. What is known of the spectrum in the
non-definite case of (1.1) is that it consists of a doubly infinite sequence of
real eigenvalues accumulating only at ±∞ and there is an at most finite,
though possibly empty, set of non-real eigenvalues.

A major advance in the general non-definite case was made (apparently
independently) by both Otto Haupt and R.G.D. Richardson in [11], [22]
(see [18] for more details). They proved an analog of Sturm’s oscillation
theorem in the non-definite case which we state here for the sake of com-
pleteness and that we call the Haupt-Richardson oscillation theorem:

Theorem 1. [Haupt-Richardson, [18]] In the non-definite case of (1.1) there
is an integer nR ≥ 0 such that for each n ≥ nR there are at least two real
solutions of (1.1) having n zeros in (a, b) while for n < nR there are no real
solutions having n zeros in (a, b). Furthermore, there is a possibly different
integer nH ≥ nR such that for each n ≥ nH there are only two solutions having
exactly n zeros in (a, b).

The usual Sturm oscillation theorem is subsumed in the preceding as the
case where nR = nH = 0. The quantities nR, nH whose study form, in
part, the body of this work will be defined next.

Let λ > 0. Referring to Theorem 1, the smallest natural number nR such
that for every n ≥ nR there is at least one solution of (1.1) oscillating n
times in (a, b) is called the Richardson index. On the other hand, the
smallest natural number nH such that for every n ≥ nH (1.1) has exactly
one solution oscillating n times in (a, b) is called the Haupt index. To
the best of our knowledge the only treatment of the Richardson index
for non-definite problems appeared in [1], [2], [4], [12], [13], [14] and the
references therein. Similar definitions apply in the case where λ < 0. (if
λ < 0 we can replace w by −w in the sequel.)

Incidentally, the notion of a Richardson number (it should have been
called the Haupt number for consistency), is defined as that smallest eigen-
value denoted by ΛR, such that for all other eigenvalues λ ≥ ΛR there is
exactly exactly one eigenfunction y(x, λ) oscillating n times for all suffi-
ciently large n. This was originally mentioned in [4] and some results as
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to its estimates there were obtained in a special case there. The first esti-
mation of the Richardson number for a problem with one turning point
appeared in [4]. Estimations in the case of two turning points can be
found in [12] and the references therein.

In order to be consistent with existing nomenclature, the Haupt number
(it should really be called the Richardson number) must now be defined
as that smallest eigenvalue of (1.1) say, ΛH, such that for all eigenvalues
λ ≥ ΛH we have at least one eigenfunction y(x, λ) oscillating n times.
That there can be more than one eigenfunction oscillating a fixed number
of times is now well-known (see [4], [12]).

In this paper we will give general estimates for both the Haupt and
Richardson indices thereby improving on those obtained in [2]. We also
give estimates for both the Haupt and Richardson numbers. Our results
will be stated for positive eigenvalues only as analogous results for the
negative eigenvalues may be stated readily by replacing λ by −λ and r(x)
by −r(x) in the sequel. We leave these changes to the reader.

Thus, after some basic notions and lemmas in Section 2 which culminate
with a rewriting of the minimum principle for real eigenvalues, we prove
our main results in Section 3. The main purpose of Section 3 is to prove
a conjecture, long left unanswered, [[6], p.104, Problem 5], which gener-
alises a key result in [2] where it was shown that the existence of just one
pair of non-real eigenvalues implies the non-existence of a real eigenfunc-
tion that has one sign in (a, b), i.e., nR ≥ 1. In Theorem 5 we show that,
essentially, nR ≥ m + n, where m is the number of pairs of non-conjugate
distinct non-real eigenvalues of (1.1) (also called ghost states) and n is
the number of real eigenvalues corresponding to degenerate ghost states
(see the next section for definitions). That this value of n < ∞ is a conse-
quence of results in [19]. After an excursion into Lyapunov’s inequality
we present some bounds on all four numbers nH, nR, ΛH, ΛR that com-
plement the bounds in [2].
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2 Preliminaries

Much of the notation that follows regarding ghosts is due to W. Pauli [17]
in letters to Källén and Lee (1954) and, later on, W. Heisenberg (1955),
see [18] for other references. An eigenfunction of (1.1) corresponding to a
non-real eigenvalue λ will be called a complex ghost, see [18]. Complex
ghosts always satisfy ∫ b

a
|y|2 w dx = 0.

A complex ghost is said to be degenerate if∫ b

a
y2 w dx = 0,

and non-degenerate if the preceding integral is non-zero.

A real eigenfunction u with corresponding real eigenvalue λ will be called
a degenerate real ghost if it satisfies∫ b

a
u2 w dx = 0.

It will be called a non-degenerate real ghost if

λ
∫ b

a
u2 w dx < 0.

The number of real ghosts (whether degenerate or not) is always finite,
[19]. The possible presence of such ghosts should not be surprising as
we allow w(x) to change its sign on (a, b). Since the coefficients in (1.1)
are real, it is easy to see that complex ghosts occur in complex conjugate
pairs, i.e., if λ, φ is such an eigenvalue/eigenfunction pair, then λ̄, φ̄ is
another such pair. By a ground state of (1.1) is meant a real eigenfunction
u with u(x) ̸= 0 for x ∈ (a, b). In the sequel we will generally use u, v, . . .
for real eigenfunctions and φ, ψ, . . . for non-real eigenfunctions.

For the sake of simplicity we will sometimes assume that the functions
p, q, w ∈ C[a, b] (piecewise continuous is sufficient as is L1[a, b]) where
[a, b] = I ⊂ R is a closed bounded interval, p(x) > 0 for all x ∈ I and non-
empty support, supp w(x), of w. Thus, in addition to the usual conditions
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that w(x) must change its sign on I, we also allow w(x) ≡ 0 on intervals
(or sets of positive Lebesgue measure) in some cases. If 1/p, q, w ∈ L1[a, b]
and |p(x)| < ∞ a.e. in [a, b] then it is well known (e.g., [[3], Chapter 8])
that solutions y of (1.1) and the quantity, py′ are both in AC[a, b] and
(1.1) is satisfied a.e. So, if p(x) = 1, q, r ∈ L1[a, b] then all solutions are
necessarily C1(a, b).

The first few lemmas are classical, easily shown, and so the proofs are
omitted, [18]. In the sequel, unless otherwise noted, we will suppress the
independent variable in the various differential or integral expressions
for ease of use.

Lemma 1. Let µ be a real eigenvalue of (1.1), u a corresponding real eigenfunc-
tion, and let λ, φ, be a non-real eigenvalue/eigenfunction of (1.1). Then,∫ b

a
u φ w dx = 0 and

∫ b

a
u φ̄ w dx = 0. (2.1)

Lemma 2. Let λ1, λ2, be non-real eigenvalues of (1.1) with λ1 ̸= λ̄2 and φ1, φ2
their corresponding eigenfunctions. Then,∫ b

a
(pφ1

′ φ̄2
′ + qφ1 φ̄2) dx = 0 and

∫ b

a
φ1 φ̄2 w dx = 0. (2.2)

Similarly, whenever λ1 ̸= λ2,∫ b

a
φ1 φ2 w dx = 0. (2.3)

Finally, for any non-real eigenvalue/eigenfunction pair λ, φ, we always have both∫ b

a
(p|φ′|2 + q|φ|2) dx = 0 and

∫ b

a
|φ|2 w dx = 0. (2.4)

Remark 1. In other words, (2.4) states that all non-real eigenfunctions cor-
responding to non-real eigenvalues are (complex) ghost states (or ghosts,
for short). In addition, observe that both equalities in (2.4) hold whenever
φ is a degenerate real ghost.

In the sequel we will always assume that S = supp w has positive
Lebesgue measure.
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Lemma 3. For any i, j satisfying 1 ≤ i < j ≤ n, let λi, λj with λi ̸= λj
be any set of eigenvalues of (1.1) with eigenfunctions φi, φj. Then the set
{φ1, φ2, . . . , φn} of all such eigenfunctions is a linearly independent set over
S .

Proof. Letting ∑n
i=1 ci φi = 0, as usual and applying the operator L we

obtain, for x ∈ S ,
n

∑
i=1

ci λiwφi = 0 =⇒
n

∑
i=1

ci λi φi = 0, x ∈ S . (2.5)

Applying L once again to the right side of (2.5) and iterating this proce-
dure we obtain the system of n equations in the n unknowns, ci φi, valid
for x ∈ S , and for m = 0, 1, 2, ..., n − 1, i.e.,

n

∑
i=1

ci λm
i φi = 0, x ∈ S . (2.6)

The determinant of the latter matrix system is the Vandermonde deter-
minant,

∏
1≤i<j≤n

(λj − λi) ̸= 0,

by hypothesis. It follows that all ci φi = 0, x ∈ S , and so ci = 0 for all
i.

Remark 2. Clearly, in the case where w is continuous, the result holds if
supp w is replaced by any interval over which w(x) ̸= 0. Furthermore,
this lemma also holds if all the eigenvalues are real and distinct.

The next result is an alternate characterization of the real eigenvalues of
Sturm-Liouville problems as a minimum of a quadratic functional over an
appropriate space, but without sign restrictions on the weighted square-
integrable generally indefinite inner products. This allows for ghosts as
defined earlier.

Fix a differentiable function u and consider the ideal V generated by u in
the ring of all complex-valued differentiable functions, η, on (a, b). Thus,

V = {φ : φ = uη, η ∈ C1(a, b)},
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Lemma 4. Let λu ∈ R be an eigenvalue of (1.1) with real eigenfunction u.
Then, for any φ ∈ V , ∫ b

a
p|φ′|2 + q|φ|2 ≥ λu

∫ b

a
|φ|2 w, (2.7)

with equality holding iff φ = αu, α ∈ C, on I.

Proof. First we note that eigenfunctions of (1.1) can only have finitely
many zeros on I (otherwise the point of accumulation would imply, along
with existence and uniqueness, that the eigenfunction would vanish iden-
tically in some interval about it). A simple, though lengthy calculation
shows that

p|φ′|2 + q|φ|2 = p(u′)2|η|2 + pu2|η′|2 + qu2|η|2 + uu′(η̄pη′ + ηpη̄′) (2.8)

Simple integrations and use of (1.1) show that∫ b

a
uu′(η̄pη′ + ηpη̄′) =

∫ b

a
(pu′)u(ηη̄)′ =

∫ b

a
(pu′)u (|η|2)′

= −
∫ b

a
p(u′)2|η|2 −

∫ b

a
u|η|2(pu′)′. (2.9)

Integrating (2.8), using (2.9) and (1.1) once again, we obtain,∫ b

a
p|φ′|2 + q|φ|2 =

∫ b

a
pu2|η′|2 + λu

∫ b

a
|φ|2w. (2.10)

from which (2.7) follows immediately.

Observe that the integral
∫ b

a pu2|η′|2 =
∫ b

a pu2|
( φ

u
)′ |2 converges and is

zero iff u2|
( φ

u
)′ |2 = 0 or, equivalently, if |uφ′ − u′φ|2 = 0 and the conclu-

sion follows.

Corollary 1. Under the assumptions of the previous lemma,

min
φ∈V

(∫ b

a
p|φ′|2 + q|φ|2 − λu

∫ b

a
|φ|2 w

)
≥ 0 (2.11)

where equality holds iff φ = αu for some constant α ∈ C.

Remark 3. Note that there is no restriction on the sign of the integral on
the right of (2.7) or (2.11). Indeed, the quantities may even be ghosts (real
or complex).
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3 The main results

In [1], [2] it was shown that the mere existence of a non-real eigenvalue of
(1.1) must imply the non-existence of a real ground state (that is, an eigen-
function of (1.1) having no zeros in (a, b)). This result was subsequently
generalized in [20] so as to simultaneously include analogous results for
difference equations and partial differential equations of elliptic type. In
addition, we have extended the result in [2] below in Theorems 2-4.

Theorem 2. Let n ≥ 1 and let {λm, λ̄m}n
m=1 be a set of n mutually distinct

pairs (λi ̸= λj for i ̸= j) of non-conjugate (λi ̸= λ̄j for 1 ≤ i, j ≤ n) non-real
eigenvalues of (1.1). Then (1.1) has no real eigenfunction with n − 1 zeros in
(a, b).

Proof. Assume, on the contrary, that there exists an eigenfunction, u, cor-
responding to a real eigenvalue λu having n − 1 zeros x1 < x2 < . . . <
xn−1 in (a, b). Fix a set of eigenfunctions, φi, i = 1, 2, . . . , n, corresponding
to the eigenvalues λi and choose the constants ci ∈ C such that

φ(x) = c1φ1(x) + c2φ2(x) + · · ·+ φn(x) (3.1)

satisfies φ(xi) = 0 for i = 1, 2, . . . , n − 1. Since there are n − 1 equations
in n unknowns we can find and then fix such a set ci of constants, not
all zero, and generally in C. Using the notation of Lemma 4 we observe
that since φ and u have common zeros whose derivatives (here, pφ′, pu′)
cannot vanish at these zeros, φ ∈ V where V is defined above.

A long, straightforward calculation, and repeated uses of Lemma 1 and
Lemma 2 yields (2.4) for our choice of φ. An application of Lemma 4
gives a case of equality in (2.7) so that φ(x) = αu(x), where α ∈ C is a
non-zero constant. Unlike the case where n = 1 in [1] the contradiction
here is not immediate as it is possible for ϕ(x), being a linear combination
of non-real eigenfunctions, to be real valued.

We set aside this possibility by noting the following: We know that
Lφ(x) = αLu(x) and Lφi(x) = λiw(x)φi(x), Lu(x) = λuw(x)u(x) af-
ter which an application of the operator L in (1.1) to (3.1) gives us
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∑n
m=1 cmλmwφm = λuwu or

n

∑
m=1

cmλm φm = αλuu (3.2)

on supp w. On the other hand, since φ(x) = αu(x) (and φ is given by
(3.1)) we get,

n

∑
m=1

cm φmλu = αλuu. (3.3)

Subtracting (3.3) from (3.2) we find,

n

∑
m=1

cm(λm − λu)φm = 0, (3.4)

over supp w. However, λm − λu ̸= 0 for all m, by hypothesis, and so
Lemma 3 implies that all cm = 0, a contradiction.

Corollary 2. [[2], Theorem 2.0] If (1.1) has a non-real eigenvalue there is no
real eigenvalue whose eigenfunction is non-zero on (a, b).

Corollary 3. If (1.1) has a non-real eigenvalue then nR = 1, that is, the Richard-
son index is equal to 1.

The previous corollary covers the next numerical example.

Example 1 ([4], p. 39). Let p(x) = 1, q(x) = q, w(x) = sgn x, in (1.1), for
x ∈ [−1, 1]. Then for q = 3, (1.1) has a pair of pure imaginary eigenval-
ues and there is no nonzero real eigenfunction on (−1, 1) as the smaller
oscillation number obtained there is one (1).

The next result is a reformulation of Theorem 2 that also includes some
real ghosts.

Theorem 3. Let n ≥ 1 and let λi ̸= λj for i ̸= j and 1 ≤ i, j ≤ n be real
eigenvalues of (1.1) whose eigenfunctions are all degenerate real ghosts. Then
(1.1) has no real eigenfunction with n − 1 zeros in (a, b).

Proof. The proof follows along the same lines as that of Theorem 2. We
leave the details to the reader.
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Example 2 ([4], p. 41). This is an application of Theorem 3. Let p(x) = 1,
q(x) = q, w(x) = sgn x, in (1.1), for x ∈ [−1, 1]. Then for q ≈ 21.99604,
(1.1) has two real eigenvalues whose eigenvectors are (real) ghosts and
there is no real eigenfunction having only one zero in (−1, 1).

The next example is covered by the case n = 2 in Theorem 2.

Example 3 ([4], p. 40). Let p(x) = 1, q(x) = q, w(x) = sgn x, in (1.1),
for x ∈ [−1, 1]. Then for q = 15, (1.1) has a two pairs of non-real, non-
conjugate eigenvalues and there is no real eigenfunction having only one
zero in (−1, 1) (so the smallest oscillation count is 2)

The final example is covered by the case n = 3 in Theorem 2.

Example 4 ([4], p. 42). Let p(x) = 1, q(x) = q, w(x) = sgn x, in (1.1),
for x ∈ [−1, 1]. Then for q = 33, (1.1) has a three pairs of non-real, non-
conjugate eigenvalues and there is no real eigenfunction having only two
zeros in (−1, 1) (so the smallest oscillation count is 3).

These examples indicate that it is very likely the case that one cannot
do better than the estimates obtained in Theorem 2. Interestingly, both
Theorem 2 and Theorem 3 can be combined so as to obtain the more
general

Theorem 4. Let m, n ≥ 1 and let {λk, λ̄k}m
k=1 be a set of m mutually distinct

pairs (λi ̸= λj for i ̸= j) of non-conjugate (λi ̸= λ̄j for 1 ≤ i, j ≤ n) non-real
eigenvalues of (1.1). Let {µi}n

i=1 be a set of mutually distinct real eigenvalues
corresponding to degenerate real ghosts. Then (1.1) has no real eigenfunction
with m + n − 1 zeros in (a, b).

Proof. The proof follows along the same lines as that of Theorem 2 since,
by definition, degenerate real ghosts also satisfy the second of (2.4). We
leave the details to the reader.

Thus, by Theorem 4, the Richardson index satisfies,

nR ≥ m + n. (3.5)
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That nR ̸= 0 necessarily was known to both Haupt [11] and Richardson
[22] in the so-called orthogonal case (called right definite nowadays). In the
special orthogonal case these results in [11], [22] were rediscovered and
improved upon in [8].

Remark 4. For n = 0, m = 1 we recover the main result in [1], [2]. In
addition, the estimate m + n in the previous theorem is best possible in
the sense that non-degenerate real ghosts cannot be added to m + n and
maintain the conclusion.

This can be seen by the following example, based on an earlier one in
[[19], Remark 4]. In that example w(x) = 1, x ∈ [0, 1], w(x) = −1
on [1, 4], and q(x) = −9π2/4, x ∈ [0, 4]. Extensive numerical calcula-
tions show that this problem has 4 non-degenerate real ghosts (at λ ≈
1, 12.7, 18.8, 22.1) with each ghost carrying an oscillation number equal to
5, 4, 3, 2 with 2 being the smallest oscillation count. The next eigenvalue,
i.e., λ ≈ 49.3, has an eigenfunction with 3 zeros and the number of zeros
increases indefinitely after that. There are no degenerate real ghosts, and
exactly 2 pairs of non-real eigenvalues (at 5.8± 8.2i and −12± 4.1i). If we
were to add the non-degenerate ghosts to m + n we would conclude that
(1.1) can have no real eigenfunction with 6 or less zeros in (a, b). How-
ever, this is false as this problem admits λ = 1 as an eigenvalue with the
non-degenerate real ghost y(x) = sin(3πx/2), an eigenfunction with five
zeros in (0, 4).

Example 5. Let p(x) = 1, q(x) = q, w(x) = sgn x, in (1.1), for x ∈
[−1, 1]. Then for q = 4π2, (1.1) has a 2 pairs of complex ghosts and one
degenerate real ghost. Thus, nR ≥ 3 and there is no real eigenfunction
having only two zeros in (−1, 1) as in the example.

Next, we give a minor but useful extension of the classical Liapunov in-
equality from the case of continuous to measurable coefficients. The proof
is an adaptation of the method in [16] to the more general case consid-
ered here. This is followed by a more general result first due to Rapoport
in [21] and cited by Kreǐn [15] on its extension to solutions of periodic
differential equations with a prescribed number of zeros. Our proof of
the main result in [21] is simpler and uses induction on the number of
zeros of a given solution. Using these estimates we can then associate the
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Richardson index to the Richardson number. In the following discussion
all integrals are in the sense of Lebesgue. In the sequel all solutions are
non-trivial unless otherwise specified.

Lemma 5. Let q ∈ L1(I) be real valued, I = [a, b], and let y be a solution of

y′′ + q(x)y = 0 (3.6)

having two consecutive zeros in I. Then∫ b

a
q+(x) dx ≥ 4

b − a
, (3.7)

where q+(x) = (q(x) + |q(x)|)/2 is the positive part of q.

Proof. First, observe that the left hand side of (3.7) cannot be zero since, if
it were, this would imply that q(x) ≤ 0 a.e. which, in turn, would imply
that (3.6) is disconjugate, [10], i.e., no non-trivial solution can have more
than one zero, contrary to the assumption.

Since q+(x) ≥ q(x) Sturm’s comparison theorem implies that there is a
solution y of

y′′ + q+(x)y = 0 (3.8)

such that y(a) = 0, and y(c) = 0, for some c ∈ (a, b). Without loss of
generality we may assume that y(x) > 0 in (a, c). Since q is integrable
over I standard existence and uniqueness theorems under Carathédory
conditions [9] imply that solutions to initial value problems associated
with (3.6) or (3.8) are always absolutely continuous along with their first
derivatives (and so in C1).

We show that y cannot have a relative minimum in (a, c). Assume, on the
contrary, that y does attain a relative minimum at x = γ, say γ ∈ (a, c).
Since y is differentiable at γ, y′(γ) = 0. Thus, there is a δ > 0 such that
y′(x) ≤ 0 for x ∈ (γ − δ, γ) and y′(x) ≥ 0 for x ∈ (γ), γ + δ). However
y′′(x) ≤ 0 in (a, c), thus, for x ∈ (γ − δ, γ) we must have

∫ γ
x y′′(t) dt ≤ 0

i.e., y′(x) ≥ 0 there. Hence y′(x) = 0 a.e. in (γ − δ, γ). Similarly we can
show that y′(x) = 0 in (γ, γ + δ). Since y′ is continuous in this neigh-
borhood of γ, we must have y(x) = C, where C is a constant, through-
out (γ − δ, γ + δ). Assuming there is a non-trivial solution z such that
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z(x) = C in (γ − δ, γ + δ), then z(γ) = C and z′(γ) = 0. Their difference
w = y − z is a solution of (3.8) that satisfies w(γ) = 0, w′(γ) = 0. Hence
w ≡ 0, i.e., y = z and so y(x) = C throughout (a, c) i.e, y(x) ≡ 0 through-
out [a, c], and therefore throughout [a, b], which is impossible, again by
uniqueness. Thus, our solution y cannot have a relative minimum in
(a, c).

Now let y attain its absolute maximum at x = m, say, m ∈ (a, c). Since
y′ is not increasing there follows that y′(a) ≥ y(m)/(m − a). Similarly,
y′(c) ≥ y(m)/(m − c). Thus,

−y′(c) + y′(a)
y(m)

≥ 1
m − a

+
1

c − m
≥ 1

m − a
+

1
b − m

=
b − a

(m − a)(b − m)
.

Since y′ is absolutely continuous, we get (suppressing the variables of
integration),

−y′(c) + y′(a)
y(m)

=
−1

y(m)

∫ c

a
y′′ dx =

1
y(m)

∫ c

a
q+ y dx ≥ b − a

(m − a)(b − m)
.

However,
1

y(m)

∫ c

a
q+ y dx ≤

∫ c

a
q+ dx,

by construction. Therefore,∫ c

a
q+ dx ≥ b − a

(m − a)(b − m)
≥ inf

x∈[a,b]

b − a
(x − a)(b − x)

=
4

b − a

and the result follows.

We formulate a slightly more general result in the case our solution has
many zeros (see [21] for the case where q(x) ≥ 0 and has mean value
equal to 1).

Lemma 6. Let q ∈ L1(I) be real valued, I = [a, b], and let y be a solution of
(3.6) having n interior zeros in I, n ≥ 0, and vanishing at the endpoints. Then∫ b

a
q+(x) dx ≥ 4(n + 1)2

b − a
, (3.9)

where q+(x) = (q(x) + |q(x)|)/2 is the positive part of q.
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Proof. As in Lemma 5 we assume that y(a) = y(b) = 0. Let x0 = a < x1 <
x2 < x3 < · · · < xn < b = xn+1 denote the n interior zeros of y. The case
n = 1 is a consequence of Lemma 5. Since, for every m = 0, 1, 2, . . . , n, we
have y(xm) = y(xm+1) = 0, Lemma 5 implies that∫ xm+1

xm
q+(x) dx ≥ 4

xm+1 − xm
. (3.10)

for each such m. Therefore,∫ b

a
q+(x) dx ≥

n

∑
m=0

4
xm+1 − xm

. (3.11)

Writing
n

∑
m=0

1
tm+1 − tm

≡ f (t1, t2, . . . , tn)

where t0 = a, tn+1 = b, we proceed to calculate the minimum of f over
the bounded set V of points (t1, t2, . . . , tn) satisfying

a < t1 < t2 < t3 < · · · < tn < b.

A straightforward calculation gives that ∇ f = 0 iff

(t1 − a)2 = (t2 − t1)
2 = · · · = (tn − tn−1)

2 = (b − tn)
2. (3.12)

Taking into account the fact that the tm are all distinct and increasing we
get a system of n equations in n unknowns (recall that t0 = a, tn+1 = b)
i.e.,

tm − 2tm−1 + tm−2 = 0, m = 0, 1, 2, . . . , n + 1.

The system may be solved recursively yielding the solutions

t∗m =
(n − m + 1)a + mb

n + 1
, m = 1, 2, . . . , n. (3.13)

Finally, a simple though lengthy calculation gives that

inf
(t1,t2,...,tn)∈V

f (t1, t2, . . . , tn) = f (t∗1 , t∗2 , . . . , t∗n) =
(n + 1)2

b − a
.

Equation (3.11) now implies that∫ b

a
q+(x) dx ≥ 4 f (t∗1 , t∗2 , . . . , t∗n) =

4(n + 1)2

b − a
,

as required.
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These two lemmas can be used to give bounds on both the Richardson,
nR, and Haupt, nH, indices.

Theorem 5. Let p ≡ 1, w, q ∈ L1(a, b) and
∫ b

a w+(x) dx > 0. For λ > 0, let
there be an eigenfunction corresponding to a real eigenvalue λnR of (1.1) having
nR zeros in (a, b) (where we recall, by definition, that there cannot be any real
eigenfunction having fewer than nR zeros in (a, b)). Then,

λnR ≤ ΛR,

λnR = ΛH,

where ΛH is the Haupt number and

nR + 1 ≤
(

b − a
4

{
ΛH

∫ b

a
w+(x) dx +

∫ b

a
q−(x) dx

})1/2

.

Proof. Since the number of zeros of any real eigenfunction may increase
and even decrease as the eigenvalue parameter increases (and this only a
finite number of times, see [19]) we see that λnR ≤ ΛR. That λnR = ΛH, is
clear from the definitions.

Using Lemma 6 we find,∫ b

a
(λnR w(x)− q(x))+ dx ≥ 4(nR + 1)2

b − a
.

However, for any λ > 0 there holds, (λw(x)− q(x))+ ≤ λr+(x) + q−(x).
tince λnR = ΛH, the result follows.

Given the definition of the Haupt-Richardson indices and numbers we
know that nR ≤ nH. The next result is an immediate consequence of
Theorem 5.

Theorem 6. Let λnH be the smallest positive eigenvalue whose eigenfunction
has nH zeros in (a, b). Then,

λnH = ΛR

and

nH + 1 ≤
(

b − a
4

{
ΛR

∫ b

a
w+(x) dx +

∫ b

a
q−(x) dx

})1/2

,

where ΛR is the Richardson number.
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Theorems 5, 6 provide a lower bound on both ΛR and ΛH. Other lower
bounds were discussed in [4] but for particular cases of the weight func-
tion.

Further lower bounds may be obtained indirectly using Sturm’s compar-
ison theorem. For example, for λ > 0, since λw(x)− q(x) ≤ λ|w(x)| −
q(x) we can compare (1.1) with

−(p(x)z′)′ + q(x) z = µ|w(x)| z, z(a) = 0 = z(b), (3.14)

for which theoretical lower bounds on its eigenvalues µn are many. Thus,
if ΛR is the Richardson number for (1.1), then ΛR ≥ µnH where µnH is that
eigenvalue of (3.14) whose eigenfunction, assuming it exists, has precisely
nH zeros in (a, b).

Note: The non-existence of such an eigenfunction is only possible in the
case where w(x) = 0 on one (or more) sets of positive Lebesgue measure
since on such a set E, say, we may choose q in such a way that all the
solutions of (3.14) will have at least as many zeros on [a, b] as the equa-
tion −(p(x)z′)′ + q(x) z = 0 does for x ∈ E (as µ will not appear in the
equation but all eigenfunctions must have at least that many zeros).

Setting aside such an anomaly for the moment and assuming p(x) > 0,
w(x) > 0 and p, q, w are all continuous on [a, b] one can deduce that, for
all n ≥ 0, (see [[7], Theorem 1]) ,

µn > inf
x∈[a,b]

q(x)
|w(x)| +

(n + 1)2π2

c2
(∫ b

a dx/p(x)
)2

where c2 = ||wp||∞, and the inf is assumed to exist. So, since ΛR ≥ µnH ,
we have

ΛR > inf
x∈[a,b]

q(x)
|w(x)| +

(nH + 1)2π2

c2
(∫ b

a dx/p(x)
)2 .

The Haupt number, ΛH, may be estimated similarly and we leave the
details to the reader.

Remark 5. Upper bounds on ΛR may be found in [[4], Propositions 3, 4].
More results in this direction, along with numerical estimations, may be
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found in [12], [13], in the case where w(x) has two turning points (i.e.,
sign changes) in (a, b).

Example 6. In [[4], p.41] there are numerical calculations indicating that
in the case where p(x) = 1, q(x) = −22 for all x ∈ [a, b] = [−1, 1],
w(x) = sgn x, the Richardson index, nR = 2, the Haupt index, nH = 3,
the Richardson number, ΛR ≈ 5.7069. The upper bound in Theorem 5
gives nR ≤ 5.845, in agreement with the numerics.

Example 7. In the case where p(x) = 1, q(x) = −41.9 for all x ∈ [a, b] =
[−1, 1], w(x) = sgn x in [[4], p.38], the Richardson index, nR = 3. Here,
the smallest positive eigenvalue having an eigenfunction with 3 zeros is
λnR ≈ 23.3372. The upper bound in Theorem 5 now gives nR ≤ 8.771,
also in agreement with the numerics.

4 Conclusions

We have estimated the Haupt index, Richardson index, Haupt number,
and Richardson number associated with non-definite Sturm-Liouville prob-
lems [18]. In so doing, we have shown that the larger the number of
non-real pairs of eigenvalues (and degenerate real ghosts) the larger the
smallest oscillation number of the (real) eigenfunctions corresponding to
real eigenvalues thereby proving a conjecture in [6]. This loss of oscil-
lation numbers provides a sharp contrast to Sturm’s classical oscillation
theorem. Thus, we have complemented the original estimates in [[2], The-
orem 3.1] with the estimates in the main theorems herein.
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