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Abstract
This paper presents the existence results of the p-Laplacian Hadamard fractional boundary

value problem. We analyze the existence of multiple positive solutions for the fractional boundary
value problem with the nonlinear term which involves the derivative term with the help of a fixed
point theorem. An example is considered to describe the validity of the main result.
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1 Introduction
Fractional calculus has been a widely studied area of research in recent decades, especially because
of its ability to describe complex issues in various areas of science and engineering, by the help of
arbitrary order approach. Also, with respect to integer order derivatives, fractional order derivatives
are more suitable to describe the memory and inherent properties of many kinds of materials and
processes. Fractional order derivative is a global operator, that can serve as a tool for various
applied phenomena such as mathematical biology [27], control theory [30], dynamical process [31],
etc. For the newest studies on fractional calculus, we refer to some books [1, 17, 18, 19, 23, 25,
28]. Moreover, many scientists have introduced the existence results of fractional boundary value
problems whereby many various techniques, such as the mixed monotone operator theory, Banach’s
contraction mapping principle, see [5, 7, 10, 12, 14, 22, 26, 34, 36, 38, 39].

Most common fractional derivative types that have been researched in fractional calculus field
are Riemann-Liouville and Caputo fractional derivatives. Moreover, Hadamard fractional deriva-
tive which was demonstrated by Hadamard [13] has recently received attention from researchers.
Hadamard fractional derivative and integral are different because their definitions include logarith-
mic function of arbitrary order. Within this field, discovering new generalizations for the existing
fractional derivatives has always been a major focus of research. Using these generalized operators,
we will provide new opportunities to develop existing results from theoretical and applied point of
views. In [8], the authors introduced some operators that include Hadamard derivatives and pre-
sented the advantage of their approach through some examples. [8] showed a new approach based
on linear integro-differential operators with logarithmic kernel via Hadamard fractional calculus for
a generalization of the Lomnitz logarithmic creep law. Hadamard fractional calculus can show the
mathematical essential of this creep law more exactly in this subject [8]. In addition, the works in
[1, 4, 18] contributed significantly to the development of Hadamard derivatives within fractional
calculus. At the same time, the subject of the fractional differential equations with Hadamard-type
derivative has gained a lot of popularity due to their capability to modeling real world phenomena.
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To examine some of the recent developments on the Hadamard fractional boundary value problem
(HFBVP for short), see [2, 3, 24, 29, 32, 35, 37]. Furthermore, the analysis of solutions with p-
Laplacian operator for the HFBVP is still an area of further research and many researchers have
shown more interest to the HFBVP including p-Laplacian operator, see [11, 15, 16, 21, 33]. Also,
the function ϱ which involves Hadamard fractional derivative has been examined by only a few
researchers, see [6, 11]. For a detail monograph on Hadamard fractional calculus and integral, see
[1].

In [21], Li and Lin studied the following HFBVP involving the p-Laplacian operator{
Dβ(ϕp(D

αu(z))) = ϱ(z, u(z)), 2 < α ≤ 3, 1 < β ≤ 2, 1 < z < e,
u(1) = u′(1) = u′(e) = 0, Dαu(1) = Dαu(e) = 0,

where ϱ ∈ C([1, e]× [0,+∞), [0,+∞)). They obtained the existence and uniqueness of the positive
solution of the problem.

In [15], Xu et.al. examined the following problem{
−Dα(ϕp(D

βu(z))) = ϱ(z, u(z)), z ∈ (1, T ),
u(1) = δu(1) = δu(e) = u(e) = Dβu(1) = 0, Dβu(e) = bDβu(η),

in which 1 < α ≤ 2, 3 < β ≤ 4, ϱ ∈ C([1, e]× [0,∞), [0,∞)) and δ means delta derivative. By using
fixed point theorems, the existence results for the HFBVP is ensured.

In light of the papers mentioned above, we generate some new results about the following
problem involving Hadamard fractional derivative



HDσ1

1+
(ϕp(

HDσ2

1+
κ(z))) = ϱ(z, κ(z),H Dσ2

1+
κ(z)), 2 < σ1, σ2 ≤ 3, z ∈ (1, e),

κ(1) = κ′(1) =H Dσ2

1+
κ(1) = (ϕp(

HDσ2

1+
κ(1))′ = 0,

ϕp(
HDσ2

1+
κ(e)) =

k∑
i=1

aiϕp(
HDσ2

1+
κ(ηi)) +

∫ e

1
ϕp(

HDσ2

1+
κ(z))g(z)

dz

z
,

κ(e) =

q∑
j=1

bjκ(ξj) +

∫ e

1
κ(z)h(z)

dz

z
,

(1.1)

in which 5 < σ1 + σ2 ≤ 6, HDσ1

1+
and HDσ2

1+
are the Hadamard fractional derivative, ϕp is the

p-Laplacian, i.e., ϕp(s) = |s|p−2s, with s ∈ R, p > 1, ϕ−1
p = ϕq, and 1

p + 1
q = 1. ai ≥ 0, bj ≥ 0

(i = 1, 2, ..., k), (j = 1, 2, ..., q), 1 < η1 < η2 < ... < ηk < e and 1 < ξ1 < ξ2 < ... < ξq < e.

Let us give the necessary assumptions below:
(C1) ϱ ∈ C([1, e]× [0,∞)× (−∞,∞), (0,∞)), g, h ∈ C([1, e], [0,∞)),

(C2)
∑k

i=1 ai(log ηi)
σ1−1+

∫ e
1 g(z)(log z)σ1−1 dz

z < 1,
∑q

j=1 bj(log ξj)
σ2−1+

∫ e
1 h(z)(log z)σ2−1 dz

z < 1.

In this study, by using the theory of fixed point under appropriate conditions, we aim to ensure
the multiple positive solutions for a HFBVP involving p-Laplacian operator. The function ϱ which
involves of derivative operator HDσ2

1+
is studied by only a few scientists. In comparison to [15],[21],

our problem includes the Hadamard fractional derivative in the nonlinear term and the boundary
conditions are more complicated because of that the boundary conditions consist of the linear
combination of the unknown function and integral boundary condition. Also, Hadamard derivative
in nonlinear term is complicated, so it requires a more careful study and this type of derivative is
a growing area of research.
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2 Preliminaries
To meet the requirements in the next part, the fundamental principles of Hadamard fractional
calculus are shown here.

Definition 2.1 [25] The Hadamard fractional derivative of fractional order ϖ for a function c :
[1,∞) → R is expressed as

HDϖ
1+c(z) =

1

Γ(m−ϖ)

(
z
d

dz

)m
∫ t

1

(
log

z

s

)m−ϖ−1
c(s)

ds

s
, m− 1 < ϖ < m, m = [ϖ] + 1,

where [ϖ] shows the integer part of the real number ϖ and log(·) = loge(·).

Definition 2.2 [25] The Hadamard fractional integral of order ϖ for a function c : [1,∞) → R is
expressed as

HIϖ1+c(z) =
1

Γ(ϖ)

∫ z

1

(
log

z

s

)ϖ−1
c(s)

ds

s
, ϖ > 0,

in the event that the associated integral exists.

Lemma 2.1 [25] Let ϖ > 0 and a ∈ C[1,∞)∩L1[1,∞), then the solution of Hadamard fractional
differential equation HDϖ

1+a(z) = 0 is expressed as

a(z) =
m∑
j=1

tj(log z)
ϖ−j ,

then,

HIϖ1+
HDϖ

1+a(z) = a(z) +
m∑
j=1

tj(log z)
ϖ−j ,

in which tj ∈ R, j = 1, 2, ...,m,m− 1 < ϖ < m,m = [ϖ] + 1.

Here, we introduce X =
{
κ ∈ C[1, e] :H Dσ2

1+
κ ∈ C[1, e]

}
by the norm

∥κ∥ = max

{
max
z∈[1,e]

|κ(z)|, max
z∈[1,e]

|HDσ2

1+
κ(z)|

}
.

Hence, X is a Banach space. Demonstrate a cone M by

M = {κ ∈ X : κ(z) ≥ 0, ∀z ∈ [1, e]} .

Lemma 2.2 Let r ∈ C[1, e] be given, then c ∈ X is a solution of
HDσ1

1+
c(z) = r(z), 2 < σ1 ≤ 3, z ∈ (1, e),

c(1) = c′(1) = 0, c(e) =
k∑

i=1

aic(ηi) +

∫ e

1
g(z)c(z)

dz

z
,

(2.1)

provided that c satisfies the integral equation

c(z) = −
∫ e

1
H(z, s)r(s)

ds

s
, z ∈ [1, e],

where
H(z, s) = H1(z, s) +H2(z, s), (2.2)
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H1(z, s) = h(z, s) +

k∑
i=1

ai(log z)
σ1−1

∆
h(ηi, s),

H2(z, s) =
(log z)σ1−1

∆1

∫ e

1
H1(z, s)g(z)

dz

z
,

with

h(z, s) =
1

Γ(σ1)

{
(log z)σ1−1(1− log s)σ1−1 − (log z − log s)σ1−1, 1 ≤ s ≤ z ≤ e,

(log z)σ1−1(1− log s)σ1−1, 1 ≤ z ≤ s ≤ e,
(2.3)

and ∆ = 1−
k∑

i=1

ai(log ηi)
σ1−1, ∆1 = ∆−

∫ e

1
g(z)(log z)σ1−1dz

z
.

Proof. From Lemma 2.1, the problem (2.1) can be shown by

c(z) =
1

Γ(σ1)

∫ z

1
(log

z

s
)σ1−1r(s)

ds

s
+ t1(log z)

σ1−1 + t2(log z)
σ1−2 + t3(log z)

σ1−3,

for t1, t2, t3 ∈ R. Using c(1) = c′(1) = 0, we get t2 = 0, t3 = 0 and

c(z) =
1

Γ(σ1)

∫ z

1
(log

z

s
)σ1−1r(s)

ds

s
+ t1(log z)

σ1−1. (2.4)

If we apply the boundary condition c(e) =

k∑
i=1

aic(ηi) +

∫ e

1
g(z)c(z)

dz

z
, from (2.4), we have

t1 =
1

∆

(
− 1

Γ(σ1)

∫ e

1
(log

e

s
)σ1−1r(s)

ds

s
+

k∑
i=1

ai
Γ(σ1)

∫ ηi

1
(log

ηi
s
)σ1−1r(s)

ds

s
+

∫ e

1
g(z)c(z)

dz

z

)
.

(2.5)

Inserting (2.5) into (2.4),

c(z) =
1

Γ(σ1)

∫ z

1
(log

z

s
)σ1−1r(s)

ds

s
− (log z)σ1−1

∆Γ(σ1)

∫ e

1
(log

e

s
)σ1−1r(s)

ds

s

+
k∑

i=1

ai(log z)
σ1−1

∆Γ(σ1)

∫ ηi

1
(log

ηi
s
)σ1−1r(s)

ds

s
+

(log z)σ1−1

∆

∫ e

1
g(z)c(z)

dz

z

=
1

Γ(σ1)

∫ z

1
(log

z

s
)σ1−1r(s)

ds

s
− (log z)σ1−1

Γ(σ1)

∫ e

1
(log

e

s
)σ1−1r(s)

ds

s

−
k∑

i=1

ai(log z)
σ1−1(log ηi)

σ1−1

∆Γ(σ1)

∫ e

1
(log

e

s
)σ1−1r(s)

ds

s

+
k∑

i=1

ai(log z)
σ1−1

∆Γ(σ1)

∫ ηi

1
(log

ηi
s
)σ1−1r(s)

ds

s
+

(log z)σ1−1

∆

∫ e

1
g(z)c(z)

dz

z

= −
∫ e

1
h(z, s)r(s)

ds

s
−

k∑
i=1

ai(log z)
σ1−1

∆

∫ e

1
h(ηi, s)r(s)

ds

s
+

(log z)σ1−1

∆

∫ e

1
g(z)c(z)

dz

z

= −
∫ e

1
H1(z, s)r(s)

ds

s
+

(log z)σ1−1

∆

∫ e

1
g(z)c(z)

dz

z
.
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Furthermore, ∫ e

1
g(z)c(z)

dz

z
=−

∫ e

1
g(z)

∫ e

1
H1(z, s)r(s)

ds

s

dz

z

+
1

∆

∫ e

1
g(z)(log z)σ1−1dz

z

∫ e

1
g(z)c(z)

dz

z
,

which ensure ∫ e

1
g(z)c(z)

dz

z
= − ∆

∆1

∫ e

1
g(z)

∫ e

1
H1(z, s)r(s)

ds

s

dz

z
,

Hence,

c(z) = −
∫ e

1
H1(z, s)r(s)

ds

s
−
∫ e

1
H2(z, s)r(s)

ds

s

= −
∫ e

1
H(z, s)r(s)

ds

s
.

□

Lemma 2.3 For c ∈ C[1, e] and κ ∈ X, the following problem
HDσ2

1+
κ(z) = ϕq(c(z)), 2 < σ2 ≤ 3, z ∈ (1, e),

κ(1) = κ′(1) = 0, κ(e) =

q∑
j=1

bjκ(ξj) +

∫ e

1
h(z)κ(z)

dz

z
(2.6)

is equivalent to,

κ(z) = −
∫ e

1
K(z, s)ϕq(c(s))

ds

s
, z ∈ [1, e],

where

K(z, s) = K1(z, s) +K2(z, s), (2.7)

K1(z, s) = k(z, s) +

q∑
j=1

bj(log z)
σ2−1

∆∗ k(ξj , s),

K2(z, s) =
(log z)σ2−1

∆∗
1

∫ e

1
K1(z, s)h(z)

dz

z
,

with

k(z, s) =
1

Γ(σ2)

{
(log z)σ2−1(1− log s)σ2−1 − (log z − log s)σ2−1, 1 ≤ s ≤ z ≤ e,

(log z)σ2−1(1− log s)σ2−1, 1 ≤ z ≤ s ≤ e,
(2.8)

and ∆∗ = 1−
q∑

j=1

bj(log ξj)
σ2−1, ∆∗

1 = ∆∗ −
∫ e

1
h(z)(log z)σ2−1dz

z
.

Set nσi(z) = (log z)σi−1(1− log z),mσi(z) = (1− log z)σi−1 log z, for σi > 2, z ∈ [1, e], i = 1, 2.
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Lemma 2.4 [35] h(z, s), k(z, s) introduced by (2.3) and (2.8) have the below features:

(i) h(z, s) and k(z, s) are continuous functions and h(z, s) ≥ 0, k(z, s) ≥ 0 for any z, s ∈ [1, e];

(ii) nσ1(z)mσ1(s) ≤ Γ(σ1)h(z, s) ≤ (σ1 − 1)mσ1(s), for any z, s ∈ [1, e],

(iii) nσ2(z)mσ2(s) ≤ Γ(σ2)k(z, s) ≤ (σ2 − 1)mσ2(s), for any z, s ∈ [1, e].

Lemma 2.5 Let µ1 =
σ1−1
Γ(σ1)

+
∑k

i=1
ai(σ1−1)
∆Γ(σ1)

, µ2 =
σ2−1
Γ(σ2)

+
∑q

j=1
bj(σ2−1)
∆∗Γ(σ2)

, µ∗
1 = 1+ 1

∆1

∫ e
1 g(z)dzz , µ

∗
2 =

1 + 1
∆∗

1

∫ e
1 h(z)dzz and V1 =

∑k
i=1

ainσ1 (ηi)

∆Γ(σ1)
, V2 =

∑q
j=1

bjnσ2 (ξj)

∆∗Γ(σ2)
. Then, the functions H(z, s) and

K(z, s) introduced by (2.2) and (2.7) ensure the following features:

(i) H(z, s), K(z, s) are continuous and H(z, s) ≥ 0, K(z, s) ≥ 0, for (z, s) ∈ [1, e]× [1, e];

(ii)V1(log z)
σ1−1mσ1(s) ≤ H(z, s) ≤ µ1µ

∗
1mσ1(s), for (z, s) ∈ [1, e]× [1, e];

(iii)V2(log z)
σ2−1mσ2(s) ≤ K(z, s) ≤ µ2µ

∗
2mσ2(s), for (z, s) ∈ [1, e]× [1, e].

Proof. It can be shown that (i) ensures. To show (ii), for (z, s) ∈ [1, e]× [1, e], we get,

H(z, s) = H1(z, s) +H2(z, s)

= h(z, s) +

k∑
i=1

ai(log z)
σ1−1

∆
h(ηi, s)

+
(log z)σ1−1

∆1

∫ e

1
H1(z, s)g(z)

dz

z

≤ (σ1 − 1)mσ1(s)

Γ(σ1)
+

k∑
i=1

ai(σ1 − 1)mσ1(s)

∆Γ(σ1)

+
1

∆1

∫ e

1
(h(z, s) +

k∑
i=1

ai
∆
h(ηi, s))g(z)

dz

z

≤ (σ1 − 1)mσ1(s)

Γ(σ1)
+

k∑
i=1

ai(σ1 − 1)mσ1(s)

∆Γ(σ1)

+
1

∆1

∫ e

1

(
(σ1 − 1)mσ1(s)

Γ(σ1)
+

k∑
i=1

ai(σ1 − 1)mσ1(s)

∆Γ(σ1)

)
g(z)

dz

z

= µ1µ
∗
1mσ1(s),

and

H(z, s) ≥
k∑

i=1

ai(log z)
σ1−1

∆
h(ηi, s)

≥(log z)σ1−1
k∑

i=1

ainσ1(ηi)mσ1(s)

∆Γ(σ1)

=V1(log z)
σ1−1mσ1(s).

6

2 Feb 2024 13:29:11 PST
231212-SenlikCerdik Version 2 - Submitted to Rocky Mountain J. Math.



In a similar manner, we observe that (iii) holds.□
Using Lemma 2.2 and Lemma 2.3, let A : M → X be a operator by

Aκ(z) =

∫ e

1
K(z, s)ϕq

(∫ e

1
H(s, τ)ϱ(τ, κ(τ),H Dσ2

1+
κ(τ)

)
dτ

τ

ds

s
.

Clearly, if κ is a fixed point of the operator A, then κ represents a solution for the problem (1.1).

Lemma 2.6 Let (C1) and (C2) hold. Then, A : M → M is a completely continuous operator.

Proof. Let us demonstrate that A(M) ⊂ M. H(z, s), K(z, s), ϱ are continuous functions. Thus,
A is continuous. Lemma 2.5 and the selection of ϱ satisfy that A(z) ≥ 0 for z ∈ [1, e]. Hence,
A : M → M. Furthermore, by the Arzela–Ascoli theorem, it is obtained that A is a completely
continuous operator. □

Now, the fixed point theorem is demonstrated, which is fundamental in our main result’s proof.

Theorem 2.1 [20] Let X be a Banach space, M ⊆ X a cone of X. Set

My = {κ ∈ M : ∥κ∥ < y},
M(ζ, j1, j2) = {κ ∈ M : j1 ≤ ζ(κ), ||κ|| ≤ j2}.

Assume A : My → My be a completely continuous operator and ζ be a nonnegative, continuous,
concave functional on M with ζ(κ) ≤ ||κ|| for all κ ∈ My. If there exists 0 < p < n < d ≤ y such
that the following conditions hold:

(B1) {κ ∈ M(ζ, n, d) : ζ(κ) > n} ̸= ∅ and ζ(Aκ) > n for all κ ∈ M(ζ, n, d);

(B2) ||Aκ|| < p for all ||κ|| ≤ p;

(B3) ζ(Aκ) > n for κ ∈ M(ζ, n, y) with ||Aκ|| > d.

Then A has at least three positive solutions κj for j ∈ {1, 2, 3} in My satisfying

||κ1|| < p, ζ(κ2) > n, p < ||κ3|| with ζ(κ3) < n.

For simplicity, let

B = µ2µ
∗
2ϕq(µ1µ

∗
1)

∫ e

1
mσ2(s)ϕq

(∫ e

1
mσ1(τ)

dτ

τ

)
ds

s
,

C = ϕq(µ1µ
∗
1)ϕq

(∫ e

1
mσ1(τ)

dτ

τ

)
,

F = V2(log η)
σ2−1ϕq(V1(log η)

σ1−1)

∫ e

η
mσ2(s)

ds

s
ϕq

(∫ e

η
mσ1(τ)

dτ

τ

)
,

N = V2(log η)
σ2−1ϕq(V1(log η)

σ1−1)

∫ e

η
mσ2(s)

ds

s
.
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3 Existence Theorem
Here, we ensure the required conditions to get at least three positive solutions for the HFBVP (1.1).
Firstly, we introduce the nonnegative, continuous, concave functional Λ : M → [0,+∞) given by

Λ(κ) = min
z∈[η,e]

|κ(z)|, ∀κ ∈ M,

where η ∈ (1, e). It is obvious that Λ(κ) ≤ ||κ|| for all κ ∈ M .

Theorem 3.1 Consider that (C1)-(C2) are satisfied and there exist 0 < h < L < K < r and
K(log η)σ2

Γ(σ2+1) > L, K ≥ N−1Lmax{1, µ2µ
∗
2

∫ e
1 mσ2(s)

ds
s }ϕq(µ1µ

∗
1), L

F < min{ r
B , r

C } such that the
following hypotheses on ϱ are satisfied.

(i)ϱ(z, κ, ι) > ϕp

(L
F

)
for (z, κ, ι) ∈ [η, e]× [L,K]× [−K, 0],

(ii)ϱ(z, κ, ι) ≤ min{ϕp

( r
B

)
, ϕp

( r
C

)
} for (z, κ, ι) ∈ [1, e]× [0, r]× [−r, 0],

(iii)ϱ(z, κ, ι) < min{ϕp

( h
B

)
, ϕp

( h
C

)
} for (z, κ, ι) ∈ [1, e]× [0, h]× [−h, 0].

Then, the HFBVP (1.1) has at least three positive solutions κj for j ∈ {1, 2, 3} satisfying

||κ1|| < h, Λ(κ2) > L, h < ||κ3|| with Λ(κ3) < L.

Proof. We will ensure that the conditions of Theorem 2.1 will be achieved. First, we will demon-
srate A : Mr → Mr. If κ ∈ Mr, then ||κ|| ≤ r, using Lemma 2.5 and assumption (ii), for z ∈ [1, e],
we get

|Aκ(z)| =
∣∣∣∣ ∫ e

1
K(z, s)ϕq

(∫ e

1
H(s, τ)ϱ(τ, κ(τ),H Dσ2

1+
κ(τ))

dτ

τ

)
ds

s

∣∣∣∣
≤ µ2µ

∗
2

∫ e

1
mσ2(s)ϕq

(∫ e

1
µ1µ

∗
1mσ1(τ)ϱ(τ, κ(τ),

H Dσ2

1+
κ(τ))

dτ

τ

)
ds

s

≤ r

B
µ2µ

∗
2ϕq(µ1µ

∗
1)

∫ e

1
mσ2(s)ϕq

(∫ e

1
mσ1(τ)

dτ

τ

)
ds

s

= r,

and

|HDσ2

1+
κ(z)| =

∣∣∣∣− ϕq

(∫ e

1
H(s, τ)ϱ(τ, κ(τ),H Dσ2

1+
κ(τ))

dτ

τ

)∣∣∣∣
≤ ϕq(µ1µ

∗
1)ϕq

(∫ e

1
mσ1(τ)ϱ(τ, κ(τ),

H Dσ2

1+
κ(τ))

dτ

τ

)
≤ r

C
ϕq(µ1µ

∗
1)ϕq

(∫ e

1
mσ1(τ)

dτ

τ

)
= r.

Thus, A : Mr → Mr. By (iii) and similarly to the proof above, it can be obtained that A : Mh →
Mh.
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Now, we ensure that condition (B1) of Theorem 2.1 is obtained. By choosing κ(z) = K(log z)σ2

Γ(σ2+1)

for z ∈ [1, e], we obtain, maxz∈[1,e] |κ(z)| =
K

Γ(σ2 + 1)
, maxz∈[1,e] |Dσ2κ(z)| = K and Λ(κ) =

minz∈[η,e] |κ(z)| =
K(log η)σ2

Γ(σ2+1) > L and ∥κ∥ = K. Hence, κ(z) = K(log z)σ2

Γ(σ2+1) ∈ M(Λ, L,K), that is,

{κ ∈ M(Λ, L,K) : Λ(κ) > L} ̸= ∅.

If κ ∈ M(Λ, L,K), then L ≤ κ(z) ≤ K and −K ≤ Dσ2κ(z) ≤ 0 for any z ∈ [η, e]. Using (i), we
ensure

Λ(Aκ) = min
z∈[η,e]

Aκ(z)

≥ V2(log η)
σ2−1

∫ e

η
mσ2(s)ϕq

(∫ e

η
V1(log s)

σ1−1mσ1(τ)ϱ(τ, κ(τ),
H Dγ−1

1+
κ(τ))

dτ

τ

)
ds

s

≥ V2(log η)
σ2−1ϕq(V1(log η)

σ1−1)

∫ e

η
mσ2(s)

ds

s
ϕq

(∫ e

η
mσ1(τ)ϱ(τ, κ(τ),

H Dγ−1
1+

κ(τ))
dτ

τ

)
>

L

F
V2(log η)

σ2−1ϕq(V1(log η)
σ1−1)

∫ e

η
mσ2(s)

ds

s
ϕq

(∫ e

η
mσ1(τ)

dτ

τ

)
= L.

This proves condition (B1) of Theorem 2.1.
Lastly, we will prove the condition (B3) of Theorem 2.1. If κ ∈ M(Λ, L, r) and ||Aκ|| > K, for

z ∈ [1, e],

|Aκ(z)| =
∣∣∣∣ ∫ e

1
K(z, s)ϕq

(∫ e

1
H(s, τ)ϱ(τ, κ(τ),H Dσ2

1+
κ(τ))

dτ

τ

)
ds

s

∣∣∣∣
≤ µ2µ

∗
2ϕq(µ1µ

∗
1)

∫ e

1
mσ2(s)ϕq

(∫ e

1
mσ1(τ)ϱ(τ, κ(τ),

H Dσ2

1+
κ(τ))

dτ

τ

)
ds

s

= µ2µ
∗
2ϕq(µ1µ

∗
1)

∫ e

1
mσ2(s)

ds

s
ϕq

(∫ e

1
mσ1(τ)ϱ(τ, κ(τ),

H Dσ2

1+
κ(τ))

dτ

τ

)
,

and

|HDσ2

1+
κ(z)| =

∣∣∣∣− ϕq

(∫ e

1
H(s, τ)ϱ(τ, κ(τ),H Dσ2

1+
κ(τ))

dτ

τ

)∣∣∣∣
≤ ϕq(µ1µ

∗
1)ϕq

(∫ e

1
mσ1(τ)ϱ(τ, κ(τ),

H Dσ2

1+
κ(τ))

dτ

τ

)
.

Thus, we ensure

||Aκ|| ≤ max{1, µ2µ
∗
2

∫ e

1
mσ2(s)

ds

s
}ϕq(µ1µ

∗
1)ϕq

(∫ e

1
mσ1(τ)ϱ(τ, κ(τ),

H Dσ2

1+
κ(τ))

dτ

τ

)
.

Therefore,
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Λ(Aκ) = min
z∈[η,e]

Aκ(z)

≥ V2(log η)
σ2−1

∫ e

1
mσ2(s)ϕq

(∫ e

1
V1(log s)

σ1−1mσ1(τ)ϱ(τ, κ(τ),
H Dσ2κ(τ))

dτ

τ

)
ds

s

≥ V2(log η)
σ2−1ϕq(V1(log η)

σ1−1)

∫ e

η
mσ2(s)

ds

s
ϕq

(∫ e

1
mσ1(τ)ϱ(τ, κ(τ),

H Dσ2

1+
κ(τ))

dτ

τ

)
≥ N

max{1, µ2µ∗
2

∫ e

1
mσ2(s)

ds

s
}ϕq(µ1µ

∗
1)

||Aκ||

>
NK

max{1, µ2µ∗
2

∫ e

1
mσ2(s)

ds

s
}ϕq(µ1µ

∗
1)

≥ L.

Then, (B3) of Theorem 2.1 is also verified. Then, all conditions of Theorem 2.1 are confirmed, the
problem (1.1) has at least three positive solutions such that

||κ1|| < h, L < Λ(κ2) and h < ||κ3|| with Λ(κ3) < L.

□

Example 3.1 Let us consider the following HFBVP



HD
14/5
1+

(ϕ2(
HD

14/5
1+

κ(z))) = ϱ(z, κ(z),H D
14/5
1+

κ(z)), z ∈ (1, e),

κ(1) = κ′(1) =H D
14/5
1+

κ(1) = (ϕ2(
HD

14/5
1+

κ(1))′ = 0,

ϕ2(
HD

14/5
1+

κ(e)) = ϕ2(
HD

14/5
1+

κ(e1/2)) + 3ϕ2(
HD

14/5
1+

κ(e1/4)) +

∫ e

1
ϕ2(

HD
14/5
1+

κ(z))
dz

z
,

κ(e) =
1

3
κ(e1/2) +

2

3
κ(e1/4) +

∫ e

1
κ(z)

dz

z
,

(3.1)
where p = 2, σ1, σ2 = 14

5 , k = q = 2, η1 = e1/2, η2 = e1/4, ξ1 = e1/2, ξ2 = e1/4, a1 = 1, a2 = 3,
b1 =

1
3 , b2 = 2

3 , η = e7/10, g(z) = h(z) = 1 for z ∈ [1, e] and

ϱ(z, κ, ι) =


e−10z + 2κ

300 + |ι|
105

, κ ∈ [0, 0.3],

e−10z + (10κ− 3)(105 − 0.002) + 0.002 + |ι|
105

, κ ∈ [0.3, 0.4],

e−10z + 1000κ−400
899999.6 + 105 + |ι|

105
, κ ∈ [0.4,∞),

for z ∈ [1, e], ι ∈ [0,∞). After calculating directly, we obtain B ≈ 5.9268, C ≈ 8.8956, N ≈ 0.0002,
F ≈ 0.000004. If h = 0.3, L = 0.4, K = 200000 and r = 900000,

ϱ(z, κ, ι) > ϕp

(L
F

)
≈ 100000 for (z, κ, ι) ∈ [e7/10, e]× [0.4, 200000]× [−200000, 0],

ϱ(z, κ, ι) ≤ min{ϕp

( r
B

)
, ϕp

( r
C

)
} ≈ 101173 for (z, κ, ι) ∈ [1, e]× [0, 900000]× [−900000, 0],

ϱ(z, κ, ι) < min{ϕp

( h
B

)
, ϕp

( h
C

)
} ≈ 0.0034 for (z, κ, ι) ∈ [1, e]× [0, 0.3]× [−0.3, 0].

i.e., ϱ satisfies the conditions of Theorem 3.1. By Theorem 2.1, the problem (3.1) has at least three
positive solutions κj for j ∈ {1, 2, 3} with

||κ1|| < 0.3, Λ(κ2) > 0.4, 0.3 < ||κ3|| with Λ(κ3) < 0.4.
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Conclusion
This study examined the existence results of fractional boundary value problem by the Hadamard
fractional derivative. With the help of the Green’s function’s properties and the fixed point theory,
we obtained the appropriate conditions to ensure the existence results for the HFBVP including
p-Laplacian operator. To our knowledge, few researchers worked the HFBVP with p-Laplacian
operator. Moreover, the function ϱ which consists of the Hadamard derivative operator HDσ2

1+
has

been studied by only a few researchers.
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