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Abstract. The main purpose of this paper is to introduce a new line search viscosity method for finding a common solution of

finite families of fixed-point problems of demicontractive mappings and pseudomonotone equilibrium in a real Hilbert space.

We give a strong convergence theorem under mild conditions. We proposed a method that solves a single strongly convex

problem for only one iteration and uses an Armijo line searching rule to identify an optimal step size for the next step without

computing any half space. We have demonstrated the importance of the applicability of our algorithm to find solutions of a

variety of nonlinear analysis issues. Our result enhances many existing results in the literature. Furthermore, we give numerical

examples to show its relevance.
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1. INTRODUCTION

Equilibrium problem (EP) includes various mathematical problems such as the Kirszbraun problems, optimization problems,

fixed point problems, Nash equilibrium of noncooperative games, variational inequality problems (VIP), saddle point problems,

complementarity problems and vector minimization problems as its special case (for more details; see [1, 2]). According to

our knowledge, Muu and Oettli [3] coined the term equilibrium problem in 1992 and Blum and Oettli [4] popularized it in

1994. Several authors have established and extended a number of results concerning the existence of an equilibrium problem

solution (e.g. see [1, 5, 6]). In addition, various numerical approaches for solving equilibrium problems in both finite and

infinite-dimensional spaces have been established.

A finite family of EP is the problem of identifying a point y′ in intersection of nonempty closed convex subsets Q =
⋂N

j=1 Q j

of Hilbert space H such that

h j(y′, ȳ)≥ 0 for all ȳ ∈ Q and 1 ≤ j ≤ N, (1.1)

where h j : Q j ×Q j → R are bifunctions. The problem of identifying a common element of the set of fixed points of nonlinear

mappings and the set of equilibrium problem solutions has recently become a popular issue. The most popular methods to

solve equilibrium problems is the proximal point method. Martinet [7] initially established the proximal point approach for

problems involving monotone variational inequality and later, Rockafellar [8] extended the concept to monotone operators.

Moudafi [9] has also suggested the proximal point approach for monotone equilibrium problems. Konnov [10] proposes an

alternative variant of the proximal point method with weaker conditions. However, this technique cannot be used to solve a

pseudomonotone equilibrium problem. To overcome this problem, Tran et al. [11] proposed an extragradient method for solving
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EP and proved a weak convergence theorem. Extragradient-like methods require an iterative sequence with prior knowledge of

Lipschitz type constants. But all Lipschitz type constants are not easy to compute. As a result, various techniques for providing

variable step sizes have been suggested as a means of overcoming this issue. For example, Rehman et al. [12] proposed Popov’s

explicit iterative extragradient method (PESM) with the subgradient method and proved a weak convergence theorem. To be

more precise, they created a half-space to minimize the number of iteration steps and improve convergence. Since then, other

authors have done extensive research on the PESM; see [13, 14]. But for some cases, it is difficult to compute that half space

Cn; for Cn see [12].

On the other hand, The Armijo line-search rule is a widely accepted technology that can significantly improve the conver-

gence process of the algorithm’s iterative sequence. As a result, it can be used to solve equilibrium and related problems in

Hilbert space. Many authors used linesearch method for solving equilibrium problem; see [15, 16, 17, 18] and the references

therein. In 2021, Jolaoso et al. [17] proposed a parallel line search method for solving finite families of equilibrium and fixed

point problems. They take condition on control parameter that ∑
M
j=0 δn, j = 1; for δn, j see [17]. To remove this condition we

proposed a viscosity type method for solving finite families of equilibrium and fixed point problems which does not require

such condition.

Recently, various common problems namely common minimization problems, common variational inequalities, common

equilibrium, and common variational inclusion problems have been studied by many authors. For example, In 2016, Hieu [19]

proposed parallel hybrid Mann-type extragradient method to find common solutions to pseudomonotone equilibrium problems.

They proved the stepsize meets some condition based on a prior estimate of the bifunctions Lipschitz-like constant. It should be

noted that the Lipschitz-type constants is generally difficult to find. This difficulty may make it difficult for researchers to use

these algorithms. In 2021, Ogwo et al. [20] proposed an iterative method to solve common solution of variational inequalities

and fixed point problems for demicontractive mappings.

In this paper, influenced and inspired by the above results, we propose a new line search viscosity method and find a

common solution of finite families of pseudomonotone equilibrium and fixed-point problems of demicontractive mappings in a

real Hilbert space. We prove its strong convergence. The advantages of our new method are (1) it solves a single strongly convex

problem for the only one iteration and uses an Armijo line searching rule to identify an optimal step size for the next step; (2)

we do not require to compute the half space Cn; (3) we do not take any condition on control parameter that ∑
M
j=0 δn, j = 1; (4)

we do not require previous knowledge of Lipschitz constant; (5) we give strong convergence theorem under mild conditions.

Moreover, we use this result for solving finite families of equilibrium problems and various problems like variational inclusion,

equilibrium, null point, multiple-sets split feasibility and variational inequality problems. We also give numerical examples to

show its relevance. We represent the solution set of finite families of equilibrium and fixed point problem for demicontractive

operators by Γ.

2. PRELIMINARIES

In this section, we provide some basic definitions and results that will be used to establish our main results. Suppose that H

is a real Hilbert space and Q is a nonempty closed convex subset of H.

Definition 2.1. The bifunction h : Q×Q → R is called

(i) pseudomonotone if

h(p′,y′)≥ 0 implies h(y′, p′)≤ 0 for all p′,y′ ∈ Q.

(ii) monotone if

h(p′,y′)+h(y′, p′)≤ 0 for all p′,y′ ∈ Q.

(iii) strongly pseudomonotone if there exists γ > 0

h(p′,y′)≥ 0 implies h(y′, p′)≤−γ∥p′− y′∥2 for all p′,y′ ∈ Q.

Remark 2.2. Every strongly pseudomonotone mapping is pseudomonotone but converse is not true.
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Example 2.3. The bifunction h : Q×Q → R defined as h(p′,y′) = ∑
5
i=2(y

′
i − p′i)∥p′∥, Q = {x ∈ R5 : p′1 ≥ −1, p′i ≥ 0, i =

2,3,4,5} is not strongly pseudomonotone but pseudomotone.

Proof. Clearly, the bifunction h is pseudomonotone on Q. Now, we will prove it is not strongly pseudomonotone on Q. For

this we provide a counter example. Let p′ = (−1,0,0,0,0) and y′ = (0,0,0,0,0). Let h(p′,y′)≥ 0, which implies

5

∑
i=2

(y′i − p′i)∥p′∥ ≥ 0. (2.1)

Now, h(y′, p′) = ∑
5
i=2(p′i − y′i)∥y′∥= 0 for p′ = (−1,0,0,0,0) and y′ = (0,0,0,0,0). Also,

∥p′− y′∥2 = 1. (2.2)

Clearly, following inequality is not satisfied for any γ > 0

h(y′, p′)≤−γ∥p′− y′∥2. (2.3)

Therefore h is not strongly pseudomonotone on Q. □

Definition 2.4. A mapping PQ is called metric projection from H to Q if

∥p′−PQ p′∥= inf{∥p′− y′∥;y′ ∈ Q} for all p′ ∈ H. (2.4)

Definition 2.5. An operator S : H → H is called

(i) nonexpansive if

∥Sp′−Sy′∥ ≤ ∥p′− y′∥ for all p′,y′ ∈ H.

(ii) L-Lipschitz if there exists L > 0 such that

∥Sp′−Sy′∥ ≤ L∥p′− y′∥ for all p′,y′ ∈ H.

(iii) τ-demicontractive if τ ∈ [0,1) and Fix(S) ̸= φ such that

∥Sp′− y′∥2 ≤ ∥p′− y′∥2 + τ∥p′−Sp′∥2 for all p′ ∈ H and y′ ∈ Fix(S).

(iv) contraction if there is a constant µ ∈ (0,1) such that

∥Sp′−Sy′∥ ≤ µ∥p′− y′∥ for all p′,y′ ∈ H.

Definition 2.6. Assume that j : H → R is lower semicontinuous, proper and convex function. Then subdifferential is defined

as

∂ j(y′) = {p′ ∈ H : j(q′)− j(y′)≥
〈

p′,q′− y′
〉
} for all y′,q′ ∈ Dom( j). (2.5)

Lemma 2.7. [18] The metric projection PQ satisfies:

(i) For p′ ∈ H and y′ ∈ Q, y′ = PQ p′ iff ⟨p′− y′,y′−q′⟩ ≤ 0 for all q′ ∈ Q.

(ii) ∥PQ p′− y′∥2 ≤ ∥p′− y′∥2 −∥PQ p′− p′∥2 for all y′ ∈ Q and p′ ∈ H.

(iii) ∥PQ p′−PQy′∥2 ≤
〈

p′− y′,PQ p′−PQy′
〉

for all p′ ∈ H and y′ ∈ Q.

Lemma 2.8. [21] Consider {ln} a sequence of real numbers and there exists a subsequence {nt} of {n} satisfying lnt < lnt+1 for

all t ∈ N. Then there is a nondecreasing sequence {ms} ⊂ N such that ms → ∞ and satisfies the following properties for every

number s ∈ N

lms ≤ lms+1 and ls ≤ lms+1, (2.6)

where ms = max{t ≤ s : lt < lt+1}.

Lemma 2.9. [22] Assume that l is real-valued function on H. Define E = {p′ ∈ Q : l(p′) ≤ 0}. If E is nonempty and l is

Lipschitz continuous with modulus θ > 0, then

d(p′,E)≥ 1
θ

max{l(p′),0}, (2.7)

where d(p′,E) is the distance function from p′ onto E.
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Lemma 2.10. [23] Assume that family of sequence {τk}M
k=t ⊆R is countable , where t > 0 is a fixed integer and N1 ∈N is such

that t +1 ≤ N1. Then

τt +
M

∑
k=t+1

τk

k−1

∏
i=t

(1− τi)+
M

∏
i=t

(1− τi) = 1. (2.8)

Lemma 2.11. [23] Assume that {τk}M
k=t ⊆ [0,1] and {rk}M−1

k=t ⊆ H are countable finite sets, where t > 0 is a fixed integer and

N1 ∈ N is such that t +1 ≤ N1. For p′,q′,y′ ∈ H, define

l′ = τt p′+
M

∑
k=t+1

τk

k−1

∏
i=t

(1− τi)rk−1 +
M

∏
i=t

(1− τi)y′, (2.9)

then

∥l′−q′∥2 ≤ τt∥p′−q′∥2 +
M

∑
k=t+1

τk

k−1

∏
i=t

(1− τi)∥rk−1 −q′∥2 +
M

∏
i=t

(1− τi)∥y′−q′∥2

− τt

[ M

∑
k=t+1

τk

k−1

∏
i=t

(1− τi)∥p′− rk−1∥2 +
M

∏
i=t

(1− τi)∥p′− y′∥2
]
. (2.10)

Lemma 2.12. [24] Let {qn} ⊂ [0,∞), {pn} ⊂ (0,1) and {bn} are real sequences satisfying the inequality

qn+1 ≤ (1− pn)qn + pnbn for all n ∈ N. (2.11)

Suppose ∑
∞
n=0 pn = ∞ and limsup

n→∞

bn ≤ 0, then lim
n→∞

qn = 0.

Assumption 1. We need the following assumptions on the bifunction h to solve the equilibrium problem:

1. h is pseudomonotone on Q.

2. h(., t) is continuous on Q for every t ∈ Q.

3. h(x, .) is convex and subdifferentiable on Q for each fixed x ∈ Q.

3. MAIN RESULTS

In this section, we introduce a new line search viscosity method and prove a strong convergence theorem for solving finite

families of equilibrium and fixed point problems for demicontractive mappings.

Let Q j be family of nonempty, closed and convex subsets of a real Hilbert space H such that Q =
⋂N

j=1 Q j, where 1 ≤ j ≤ N

and Sk : H → H, k = 1,2, ...,M be a finite family of demicontractive mappings with constant ηk such that I−Sk are demiclosed

at zero with η = max{ηk}M
k=1. Let h j : Q j ×Q j →R be bifunctions satisfying Assumption 1. Assume that φ is a δ -contraction

operator defined on H.

Algorithm 3.1. Consider φ1,ρ ∈ (0,1), γ ∈ (0,1), and {κ
j

n} ⊂ [κ, κ̄], where 0 < κ ≤ κ̄ , 1 ≤ j ≤ N and ∑
∞
n=1 τn < ∞. Choose

t0, t1 ∈ Q and γn such that 0 ≤ γn ≤ γ̄n, where

γ̄n =

min
{

τn
∥tn−tn−1∥ ,γ

}
if tn ̸= tn−1,

γ otherwise.
(3.1)

Moreover, τn is a positive sequence such that τn = o(θ 1
n ) satisfying limn→∞

τn
θ 1

n
= 0.

Step 1: Compute 
xn = tn − γn(tn − tn−1),

u j
n = argmin

{
1

2κ
j

n
∥y− xn∥2 +h j(xn,y) : y ∈ Q

}
.

(3.2)
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Step 2: (Armijo line-search rule) Find kn as the smallest positive integer that satisfiesv j
n,k = (1−ρkn)xn +ρkn u j

n,

−h j(v
j
n,k,u

j
n)≥ φ1

2κ
j

n
∥xn −u j

n∥2.
(3.3)

Set v j
n,k = v j

n. If 0 ∈ ∂h j(v
j
n,v

j
n), set yn = v j

n and go to Step 4. Otherwise, do Step 3.

Step 3: Evaluate l j
n(t) =

〈
x j

n, t − v j
n

〉
, where x j

n ∈ ∂h j(v
j
n,v

j
n) for j = 1,2, ...,N. Construct the set

En = {t ∈ H :
N

∑
j=1

α
j

n l j
n(t)≤ 0}, (3.4)

where {α
j

n}N
j=1 ⊂ (0,1) such that ∑

N
j=1 α

j
n = 1 and En is nonempty set and l j

n are Lipschitz continuous with modulus θn such

that θ = min{θn, ;n ∈ N}> 0. Evaluate

yn = PEn(xn).

(3.5)

Step 4: Evaluate

tn+1 = θ
1
n φ(tn)+(1−θ

1
n )[θ

2
n yn +

M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)Sk−2yn

+
M+1

∏
i=2

(1−θ
i
n)SMyn]. (3.6)

Remark 3.2. Clearly, from equation (3.1) and ∑
∞
n=1 τn < ∞, we have

∞

∑
n=1

γn∥tn−1 − tn∥< ∞ and
γn

θ 1
n
∥tn − tn−1∥→ 0 as n → ∞. (3.7)

Lemma 3.3. Assume that xn ̸= u j
n, then there is a nonnegative integer kn satisfying (3.3).

Proof. We prove the result by contradiction. Let for every kn > 0, we estimate

v j
n,k = (1−ρ

kn)xn +ρ
kn u j

n (3.8)

and

−h j(v
j
n,k,u

j
n)<

φ1

2κ
j

n
∥xn −u j

n∥2. (3.9)

Taking limit n → ∞ and using Assumption 1, we have

−h j(xn,u
j
n)<

φ1

2κ
j

n
∥xn −u j

n∥2, (3.10)

which implies

0 ≤ h j(xn,u
j
n)+

φ1

2κ
j

n
∥xn −u j

n∥2. (3.11)

As u j
n is the solution of strongly convex problem, therefore we have

1

2κ
j

n
∥u j

n − xn∥2 +h j(xn,u
j
n)≤

1

2κ
j

n
∥y− xn∥2 +h j(xn,y), ∀y ∈ Q. (3.12)

Put y = xn in equation (3.12), then we get

1

2κ
j

n
∥u j

n − xn∥2 +h j(xn,u
j
n)≤ 0. (3.13)

From equations (3.11) and (3.13), we have

1

2κ
j

n
∥u j

n − xn∥2 ≤ φ1

2κ
j

n
∥xn −u j

n∥2, (3.14)

which implies either xn = u j
n or φ1 ≥ 1. If xn = u j

n, then this is contradiction to xn ̸= u j
n. Also if φ1 ≥ 1, then this is contradiction

to φ1 ∈ (0,1). Hence, we deduce that the Armijo line search rule in equation (3.3) is well defined. □
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Lemma 3.4. Assume that solution set is nonempty i.e., y′ ∈ Γ. Let l j
n(y′) =

〈
x j

n,y′− v j
n

〉
, where x j

n and v j
n are defined in

Algorithm (3.1), then

l j
n(xn)≥

ρkn φ1

2(1−ρkn)κ
j

n
∥xn −u j

n∥2. (3.15)

Additionally, l j
n(y′)≤ 0 and if xn ̸= v j

n, then l j
n(y′)> 0.

Proof. Let s j(xn) = xn − v j
n. Using equation (3.3), we have

xn =
v j

n,k −ρkn u j
n

1−ρkn
. (3.16)

Subracting v j
n on both sides of equation (3.16) and set v j

n,k = v j
n, we have

xn − v j
n =

ρkn

1−ρkn
(v j

n −u j
n). (3.17)

Since x j
n ∈ ∂h j(v

j
n,v

j
n), then using equations (3.3) and (3.17), we have

l j
n(xn) =

〈
x j

n,xn − v j
n

〉
=

ρkn

1−ρkn

〈
x j

n,v
j
n −u j

n

〉
≥ ρkn

1−ρkn

(
h j(v

j
n,v

j
n)−h j(v

j
n,u

j
n)
)

≥ ρkn

2(1−ρkn)κ
j

n
φ1∥xn −u j

n∥2. (3.18)

Now, if xn ̸= v j
n, then l j

n(xn)> 0. As y′ ∈ Γ, we have h j(y′,z)≥ 0 for all z ∈ Q, j = 1,2, ...N. Also, each h j is pseuedomonotone

on Q, which impies h j(z,y′)≤ 0. Subsequently,

l j
n(y′) =

〈
x j

n,y′− v j
n

〉
≤ h j(v

j
n,y′)−h j(v

j
n,v

j
n)

≤ 0. (3.19)

□

Remark 3.5. Clearly y′ ∈ En and En is a closed convex subset of a real Hilbert space H.

Theorem 3.6. Let the solution set
⋂N

j=1 EP(h j,Q)∩ (
⋂M

k=1 Fix(Sk)) is nonempty and h j for j = 1,2, ...,N satisfy Assumption

1. Assume that {θ k
n} satisfying the following conditions:

(i) lim
n→∞

θ 1
n = 0, and ∑

∞
n=0 θ 1

n = ∞,

(ii) liminf
n→∞

θ 2
n > η where n ∈ N,

(iii) liminf
n→∞

θ k
n ∏

k−1
i=2 (1−θ i

n)> 0 for every k = 3,4, ....M+1 and

liminf
n→∞

∏
M+1
i=2 (1−θ i

n)> 0.

Then {tn} converges strongly to y′ ∈
⋂N

j=1 EP(h j,Q)∩ (
⋂M

k=1 Fix(Sk)).

Proof. Firstly, we show that the sequence {tn} is bounded. Assume that y′ ∈
⋂N

j=1 EP(h j,Q)∩ (
⋂M

k=1 Fix(Sk)). From equation

(3.5) and Lemma (2.7), we have

∥yn − y′∥2 = ∥PEn(xn)− y′∥2

≤ ∥xn − y′∥2 −∥PEn(xn)− xn∥2

≤ ∥xn − y′∥2 −d(xn,En) (3.20)

≤ ∥xn − y′∥2. (3.21)
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Using equation (3.2), we have

∥xn − y′∥= ∥tn − γn(tn − tn−1)− y′∥

≤ ∥tn − y′∥+ γn∥tn − tn−1∥. (3.22)

Let

hn = θ
2
n yn +

M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)Sk−2yn +

M+1

∏
i=2

(1−θ
i
n)SMyn. (3.23)

Using Lemmas (2.10), (2.11), equation (3.21), and conditions (ii) and (iii), we have

∥hn − y′∥2 = ∥θ
2
n yn +

M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)Sk−2yn +

M+1

∏
i=2

(1−θ
i
n)SMyn − y′∥2

≤ θ
2
n ∥yn − y′∥2 +

M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)∥Sk−2yn − y′∥2

+
M+1

∏
i=2

(1−θ
i
n)∥SMyn − y′∥2

−θ
2
n

[M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)∥yn −Sk−2yn∥2 +

M+1

∏
i=2

(1−θ
i
n)∥yn −SMyn∥2

]
≤ θ

2
n ∥yn − y′∥2 +

M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)(∥yn − y′∥2 +ηk−2∥yn −Sk−2yn∥2)

+
M+1

∏
i=2

(1−θ
i
n)(∥yn − y′∥2 +ηM∥yn −SMyn∥2)

−θ
2
n

[M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)∥yn −Sk−2yn∥2 +

M+1

∏
i=2

(1−θ
i
n)∥yn −SMyn∥2

]
≤
[
θ

2
n +

M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)+

M+1

∏
i=2

(1−θ
i
n)
]
∥yn − y′∥2

−
[M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)(θ

2
n −ηk−2)∥yn −Sk−2yn∥2

+
M+1

∏
i=2

(1−θ
i
n)(θ

2
n −ηM)∥yn −SMyn∥2

]
≤ ∥yn − y′∥2 −

[M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)(θ

2
n −η)∥yn −Sk−2yn∥2

+
M+1

∏
i=2

(1−θ
i
n)(θ

2
n −η)∥yn −UNyn∥2

]
(3.24)

≤ ∥yn − y′∥2 (3.25)

≤ ∥xn − y′∥2. (3.26)

From equations (3.6) and (3.26), we deduce that

∥tn+1 − y′∥= ∥θ
1
n φ(tn)+(1−θ

1
n )hn − y′∥

= ∥θ
1
n (φ(tn)− y′)+(1−θ

1
n )(hn − y′)∥

≤ θ
1
n ∥φ(tn)−φ(y′)∥+θ

1
n ∥φ(y′)− y′∥+(1−θ

1
n )∥hn − y′∥

≤ θ
1
n δ∥tn − y′∥+θ

1
n ∥φ(y′)− y′∥+(1−θ

1
n )∥xn − y′∥

≤ θ
1
n δ∥tn − y′∥+θ

1
n ∥φ(y′)− y′∥+(1−θ

1
n )(∥tn − y′∥+ γn∥tn − tn−1∥)

= (1− (1−δ )θ 1
n )∥tn − y′∥+θ

1
n ∥φ(y′)− y′∥+θ

1
n

γn

θ 1
n
∥tn − tn−1∥. (3.27)
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As lim
n→∞

γn
θ 1

n
∥tn − tn−1∥= 0, we have γn

θ 1
n
∥tn − tn−1∥ ≤ K. By using equation (3.27) we find

∥tn+1 − y′∥ ≤ (1− (1−δ )θ 1
n )∥tn − y′∥+θ

1
n

(
∥φ(y′)− y′∥+K

)
≤ max{∥tn − y′∥, K +∥φ(y′)− y′∥

1−δ
}

...

≤ max{∥t1 − y′∥, K +∥φ(y′)− y′∥
1−δ

}. (3.28)

□

Hence the sequence {tn} is bounded. Also, {φ(tn)}, {yn} and {xn} are bounded. Consider

∥xn − y′∥2 = ∥tn − γn(tn − tn−1)− y′∥2

= ∥tn − y′∥2 + γ
2
n∥tn − tn−1∥−2γn

〈
tn − tn−1, tn − y′

〉
≤ ∥tn − y′∥2 + γ

2
n∥tn − tn−1∥+2γn∥tn − tn−1∥∥tn − y′∥

≤ ∥tn − y′∥2 + γn∥tn − tn−1∥[θ 1
n .

γn∥tn − tn−1∥
θ 1

n
+2∥tn − y′∥]

≤ ∥tn − y′∥2 + γn∥tn − tn−1∥K0, (3.29)

where K0 = sup{γn∥tn − tn−1∥+2∥tn − y′∥; n ∈ N}. Now, by equation (3.24), we get

∥tn+1 − y′∥2 = ∥θ
1
n φ(tn)+(1−θ

1
n )hn − y′∥2

≤ θ
1
n ∥φ(tn)− y′∥2 +(1−θ

1
n )∥hn − y′∥2

≤ θ
1
n ∥φ(tn)− y′∥2 +∥yn − y′∥2 −

[M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)(θ

2
n −η)∥yn −Sk−2yn∥2

+
M+1

∏
i=2

(1−θ
i
n)(θ

2
n −η)∥yn −SMyn∥2

]
. (3.30)

Using equations (3.21) and (3.29), we get

M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)(θ

2
n −η)∥yn −Sk−2yn∥2

+
M+1

∏
i=2

(1−θ
i
n)(θ

2
n −η)∥yn −SMyn∥2 ≤ θ

1
n ∥φ(tn)− y′∥2 +∥tn − y′∥2 −∥tn+1 − y′∥2 + γn∥tn − tn−1∥K0. (3.31)

Consider,

∥tn+1 − y′∥2 = ∥θ
1
n φ(tn)+(1−θ

1
n )hn − y′∥2

= ∥θ
1
n (φ(tn)−φ(y′))+(1−θ

1
n )(hn − y′)+θ

1
n (φ(y

′)− y′)∥2

≤ ∥θ
1
n (φ(tn)−φ(y′))+(1−θ

1
n )(hn − y′)∥2 +2θ

1
n
〈
φ(y′)− y′, tn+1 − y′

〉
≤ θ

1
n ∥φ(tn)−φ(y′)∥2 +(1−θ

1
n )∥hn − y′∥2 +2θ

1
n
〈
φ(y′)− y′, tn+1 − y′

〉
≤ θ

1
n δ∥tn − y′∥2 +(1−θ

1
n )(∥tn − y′∥2 + γn∥tn − tn−1∥K0)+2θ

1
n
〈
φ(y′)− y′, tn+1 − y′

〉
≤ (1− (1−δ )θ 1

n )∥tn − y′∥2 + γn∥tn − tn−1∥K0 +2θ
1
n
〈
φ(y′)− y′, tn+1 − y′

〉
≤ (1− (1−δ )θ 1

n )∥tn − y′∥2 +(1−δ )θ 1
n

[
K0

1−δ

γn∥tn − tn−1∥
θ 1

n
+

2
1−δ

〈
φ(y′)− y′, tn+1 − y′

〉]
. (3.32)

Hence, we get

qn+1 ≤ (1− pn)qn + pnbn, (3.33)
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where qn = ∥tn − y′∥2, pn = (1−δ )θ 1
n and bn =

K0
1−δ

γn∥tn−tn−1∥
θ 1

n
+ 2

1−δ
⟨φ(y′)− y′, tn+1 − y′⟩.

Now, we show that tn → y′.

Case 1: Assume that there exists a N ∈ N such that {∥tn − y′∥} is decreasing for n ≥ N. As {∥tn − y′∥} is bounded and

monotonic and subsequently convergent. From equation (3.2), we get

∥xn − tn∥= ∥− γn(tn − tn−1)∥= ∥θ
1
n .

γn(tn − tn−1)

θ 1
n

∥. (3.34)

Taking limit n → ∞, we get

lim
n→∞

∥tn − xn∥= 0. (3.35)

Consider

∥tn+1 − yn∥2 = ∥θ
1
n φ(yn)+(1−θ

1
n )[θ

2
n yn +

M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)Sk−2yn

+
M+1

∏
i=2

(1−θ
i
n)SMyn]− yn∥2

≤ θ
1
n ∥φ(yn)− yn∥2 +(1−θ

1
n )[

M+1

∑
k=3

θ
k
n

k−1

∏
i=2

(1−θ
i
n)∥Sk−2yn − yn∥2

+
M+1

∏
i=2

(1−θ
i
n)∥SMyn − yn∥2]. (3.36)

Taking limit n → ∞ in equation (3.31) and using conditions (i)-(iii), we have

lim
n→∞

∥yn −Sk−2yn∥= 0 for 3 ≤ k ≤ M+1 and lim
n→∞

∥yn −SMyn∥= 0. (3.37)

Taking limit n → ∞ in equation (3.36). From equation (3.37) and limn→∞ θ 1
n = 0, we have

lim
n→∞

∥tn+1 − yn∥= 0. (3.38)

Using equation (3.25), we have

∥tn+1 − y′∥2 = ∥θ
1
n φ(tn)+(1−θ

1
n )hn − y′∥2

≤ θ
1
n ∥φ(tn)− y′∥2 +(1−θ

1
n )∥hn − y′∥2

≤ θ
1
n ∥φ(tn)− y′∥2 +(1−θ

1
n )∥yn − y′∥2

≤ θ
1
n ∥φ(tn)− y′∥2 +∥yn − y′∥2, (3.39)

which implies

−∥yn − y′∥2 ≤ θ
1
n ∥φ(tn)− y′∥2 −∥tn+1 − y′∥2. (3.40)

As yn = PEn(xn) and using Lemma (2.7), we have

∥y′− yn∥2 +∥xn − yn∥2 ≤ ∥xn − y′∥2, (3.41)

which implies

∥xn − yn∥2 ≤ ∥xn − y′∥2 −∥y′− yn∥2. (3.42)

Using equations (3.29), (3.40) and (3.42), we have

∥xn − yn∥2 ≤ ∥xn − y′∥2 +θ
1
n ∥φ(tn)− y′∥2 −∥tn+1 − y′∥2

≤ ∥tn − y′∥2 +θ
1
n

γn∥tn − tn−1∥K0

θ 1
n

+θ
1
n ∥φ(tn)− y′∥2 −∥tn+1 − y′∥2. (3.43)

Taking limit n → ∞ in equation (3.43) and using and limn→∞
γn∥tn−tn−1∥

θ 1
n

= 0, limn→∞ θ 1
n = 0, we have

lim
n→∞

∥xn − yn∥= 0. (3.44)
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Using equations (3.35), (3.38) (3.44) and by triangular inequality, we estimate

lim
n→∞

∥tn+1 − tn∥= 0. (3.45)

Using Lemma (2.9) and equations (3.15), (3.20) we have

∥yn − y′∥2 ≤ ∥xn − y′∥2 −d(xn,En)

≤ ∥xn − y′∥2 − (
1
θ

l j
n(xn))

≤ ∥xn − y′∥2 − (
ρkn φ1

2θ(1−ρkn)κ
j

n
∥xn −u j

n∥2). (3.46)

Using equations (3.29), (3.39) and (3.46), we have

∥tn+1 − y′∥2 ≤ θ
1
n ∥φ(tn)− y′∥2 +∥xn − y′∥2 − (

ρkn φ1

2θ(1−ρkn)κ
j

n
∥xn −u j

n∥2)

≤ θ
1
n ∥φ(tn)− y′∥2 − (

ρkn φ1

2θ(1−ρkn)κ
j

n
∥xn −u j

n∥2)+∥tn − y′∥2 + γn∥tn − tn−1∥K0, (3.47)

which implies

ρkn φ1

2θ(1−ρkn)κ
j

n
∥xn −u j

n∥2 ≤ θ
1
n ∥φ(tn)− y′∥2 +∥tn − y′∥2 −∥tn+1 − y′∥2 +θ

1
n .

γn∥tn − tn−1∥K0

θ 1
n

. (3.48)

Taking limit n → ∞ and using limn→∞
γn∥tn−tn−1∥

θ 1
n

= 0 and limn→∞ θ 1
n = 0, we have

lim
n→∞

ρkn φ1

2θ(1−ρkn)κ
j

n
∥xn −u j

n∥2 = 0. (3.49)

Hence

lim
n→∞

ρ
kn∥xn −u j

n∥= 0 for all 1 ≤ j ≤ N. (3.50)

Let us take two different cases:

Case (i): If liml→∞ ρ
knl > 0, then there is a ρ̄ > 0 and a subsequence {ρ

knl } of {ρkn} such that for some l0 > 0, {ρ
knl }> ρ̄ for

all l > l0. Since {xn} and {u j
n} are bounded sequences, there exists subsequence {xnl} and {u j

nl} are subsequences of {xn} and

{u j
n}. Let {xnl} converges weakly to some p′ ∈ Q. This implies

lim
l→∞

∥xnl −u j
nl∥= 0 for all 1 ≤ j ≤ N, (3.51)

which implies {u j
nl} also converges weakly to some p′ as l → ∞. Using the definition of u j

nl

u j
nl = argmin

{
1

2κ
j

nl

∥y− xnl∥2 +h j(xnl ,y) : y ∈ Q

}
, (3.52)

which gives

0 ∈ ∂h j(xnl ,u
j
nl )+

1

κ
j

nl

(u j
nl − xnl )+NQ(u

j
nl ) for all 1 ≤ j ≤ N. (3.53)

There exists g j
nl ∈ ∂h j(xnl ,u

j
nl ) for 1 ≤ j ≤ N such that〈

g j
nl ,y−u j

nl

〉
+

1

κ
j

nl

〈
u j

nl − xnl ,y−u j
nl

〉
≥ 0 for all y ∈ Q. (3.54)

As we know that

h j(xnl ,y)−h j(xnl ,u
j
nl )≥

〈
g j

nl ,y−u j
nl

〉
for all y ∈ Q. (3.55)

Also 〈
u j

nl − xnl ,y−u j
nl

〉
≤ ∥u j

nl − xnl∥∥y−u j
nl∥. (3.56)
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Using equations (3.54), (3.55) and (3.56), we have

h j(xnl ,y)−h j(xnl ,u
j
nl )+

1

κ
j

nl

〈
u j

nl − xnl ,y−u j
nl

〉
≥ 0 for all y ∈ Q (3.57)

and

h j(xnl ,y)−h j(xnl ,u
j
nl )+

1

κ
j

nl

∥u j
nl − xnl∥∥y−u j

nl∥ ≥ 0 for all y ∈ Q. (3.58)

Letting l → ∞ and using the weak continuity of h j and equation (3.51), we have

h j(p′,y)−h j(p′, p′)≥ 0 for all y ∈ Q. (3.59)

Therefore

h j(p′,y)≥ 0 for all y ∈ Q. (3.60)

Hence p′ ∈
⋂N

j=1 EP(h j,Q).

Case (ii): Assume that limn→∞ ρ
knl = 0. Since {u j

n} is bounded sequence, there exists a subsequence {u j
nl} of {u j

n}. Let {u j
nl}

converges weakly to some q′ ∈ Q. Put y = xnl in equation (3.57), we have

h j(xnl ,u
j
nl )≤− 1

κ
j

nl

∥u j
nl − xnl∥2. (3.61)

Putting k = knl and using equation (3.3), we have

−h j(v
j
nl ,knl−1

,u j
nl )≥

φ1

2κ
j

n
∥xnl −u j

nl∥
2. (3.62)

From equations (3.61) and (3.62), we have

h j(xnl ,u
j
nl )≤− 1

κ
j

nl

∥u j
nl − xnl∥2 ≤ 2

φ1
(h j(v

j
nl ,knl−1

,u j
nl )). (3.63)

As v j
nl ,k

= (1− ρ
knl )xnl + ρkn u j

nl and ρ
knl → 0, xnl → p′ and u j

nl → q′ as l → ∞, which implies v j
nl ,k

→ p′ as l → ∞. Also,

{ 1
κ

j
nl

∥u j
nl − xnl∥2} is bounded. So, we can assume that liml→∞

1
κ

j
nl

∥u j
nl − xnl∥2 exists. Using weak continuity of h j and taking

limit l → ∞ in equation (3.63), we have

h j(p′,q′)≤− lim
l→∞

1

κ
j

nl

∥u j
nl − xnl∥2 ≤ 2

φ1
h j(p′,q′). (3.64)

Hence, h j(p′,q′) = 0 and liml→∞ ∥u j
nl − xnl∥ = 0. Using similar process as in Case (i), we have p′ ∈

⋂N
j=1 EP(h j,Q). Taking

limit n → ∞ in equation (3.31) and using conditions (i)-(iii), we have

lim
n→∞

∥yn −Sk−2yn∥= 0 for 3 ≤ k ≤ M+1 and lim
n→∞

∥yn −SMyn∥= 0. (3.65)

As {xnm} converges weakly to some p′ ∈ Q and from equation (3.44), we have limn→∞ ∥xn − yn∥ = 0, which implies {ynm}

converges weakly to p′. Also, I −Sk is demiclosed at zero for each k = 1,2, ...,M, therefore p′ ∈
⋂M

k=1 Fix(Sk). Subsequently,

p′ ∈
⋂M

k=1 Fix(Sk)∩
⋂N

j=1 EP(h j,Q). Consider a subsequence {tnl} of {tn} and clearly it converges weakly to p′. Also, by

Lemma (2.7), we have

limsup
n→∞

〈
tn − y′,φ(y′)− y′

〉
≤ lim

l→∞

〈
tnl − y′,φ(y′)− y′

〉
≤
〈

p′− y′,φ(y′)− y′
〉

≤ 0. (3.66)

As ∑
∞
n=0 pn = ∞, from equations (3.33), (3.66) and Lemma (2.12) we get ∥tn −w′∥→ 0. This implies tn → w′.

Case 2: Suppose that there is a subsequence {qnl} of {qn} such that

qnl+1 ≥ qnl for all l ∈ N.
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Hence, by Lemma 2.8, there is a nondecreasing sequence of natural numbers {ns} ⊂ N such that ns → ∞ as s → ∞, we have

∥tns − y′∥ ≤ ∥tns+1 − y′∥, (3.67)

and

∥ts − y′∥ ≤ ∥tns+1 − y′∥. (3.68)

Using equation (3.43), we have

∥xns −ans∥2 ≤ ∥tns − y′∥2 + γns∥tns − tns−1∥K0 +θ
1
ns
∥φ(tns)− y′∥2 −∥tns+1 − y′∥2

≤ θ
1
ns

γns∥tns − tns−1∥K0

θ 1
ns

+θ
1
ns
∥φ(tns)− y′∥2. (3.69)

Taking limit as s → ∞ and using lims→∞
γns∥tns−tns−1∥

θ 1
ns

= 0 and lim
s→∞

θ 1
ns
= 0, we have

lim
s→∞

∥xns − yns∥= 0.

This with equation (3.31) gives

M+1

∑
k=3

θ
k
ns

k−1

∏
i=2

(1−θ
i
ns
)(θ 2

ns
−η)∥yns −Sk−2yns∥2

+
M+1

∏
i=2

(1−θ
i
ns
)(θ 2

ns
−η)∥yns −SMyns∥2 ≤ θ

1
ns
∥φ(tns)− y′∥2 +∥tns − y′∥2 −∥tns+1 − y′∥2 + γns∥tns − tns−1∥K0

≤ θ
1
ns
∥φ(tns)− y′∥2 +θ

1
ns

γns∥tns − tns−1∥K0

θ 1
ns

. (3.70)

Taking limit as s → ∞ and using lim
s→∞

θ 1
ns
= 0 and lims→∞

γns∥tns−tns−1∥
θ 1

ns
= 0, we have

lim
s→∞

∥yns −Sk−2yns∥= 0, for 3 ≤ k ≤ M+2. (3.71)

Similarly, we can prove

lim
s→∞

∥tns − xns∥= 0 and lim
s→∞

∥tns+1 − yns∥= 0. (3.72)

Also,

lim
s→∞

∥tns+1 − tns∥= 0. (3.73)

As in Case 1, we can prove that

lim
s→∞

∥xns − yns∥= 0. (3.74)

Proceeding similarly as in Case 1, we have

limsup
s→∞

〈
φ(y′)− y′, tns+1 − y′

〉
≤ 0. (3.75)

From equation (3.33), we have

qns+1 ≤ (1− pns)qns + pns bns . (3.76)

As qns+1 ≥ qns , we get

pns qns ≤ qns −qns+1 + pns bns

≤ pns bns (3.77)

Using pns > 0, we have qns ≤ bns . Subsequently,

∥tns − y′∥2 ≤ K0

1−δ

γns∥tns − tns−1∥
θ 1

ns

+
2

1−δ

〈
φ(y′)− y′, tns+1 − y′

〉
(3.78)
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As {tns} is bounded and K0
1−δ

γns∥tns−tns−1∥
θ 1

ns
→ 0 as s → ∞. Hence, from equation (3.75), we obtain ∥tns −y′∥→ 0 as s → ∞. This

together with equation (3.77) implies that ∥tns+1−y′∥→ 0 as s→∞. Also from equation (3.68), we have ∥ts−y′∥≤ ∥tns+1−y′∥

for all s ∈ N, which gives ts → y′ as s → ∞. The proof is complete.

Remark 3.7. (i) Hieu’s Algorithm [19] requires to solve two strongly convex program at each iteration, whereas our algo-

rithm requires to solve only one strongly convex program.

(ii) Theorem 3.6 generalizes the result of Isiogugu et al. [23] from Halpern method to the Line search extragradient method

including viscosity approximation.

(iii) Theorem 3.6 generalizes and extends Ogbuisi and Isiogugu [25] (Theorem 3.1) from a pseudomonotone EP to a common

solution of finite families of pseudomonotone EPs. Ogbuisi and Isiogugu [25] (Algorithm 3) use conditions on control

parameters that βn > 0, ∑
∞
k=1 βn = ∞, ∑

∞
k=1 β 2

n < ∞, and ∑
∞
k=1 βnεn = ∞. We do not require such conditions.

(iv) Jolaoso et al. result [17] use the condition on control parameters that ∑
M
j=0 δn, j = 1. We do not assume such condition.

(v) Theorem 3.6 generalizes and extends Hieu’s [26] result from nonexpansive mappings to demicontractive mappings. Fur-

thermore, our result is independent of prior knowledge of the Lipschitz constant and Hieu’s Algorithm requires to solve

two strongly convex program at each iteration.

4. APPLICATIONS

In this section, we will study that how our result can be used to find the common solution of finite families of equilibrium and

various nonlinear analysis problems like variational inequality problems, variational inclusion problems, null point problems,

multiple-sets split feasibility problems and monotone equilibrium problems.

4.1. Variational Inclusion Problem. Suppose that H is a real Hilbert space. Let S : H → 2H be set-valued maximal monotone

operator. Let r be ν-ism operator in H. Take τ ∈ (0,2ν). Then, monotone variational inclusion problem is to find y′ ∈ H such

that

0 ∈ r(y′)+S(y′). (4.1)

We know that 0 ∈ r(y′)+ S(y′) iff y′ ∈ Fix(JS
τ (I − τr)), where JS

τ is resolvent operator. Also, if τ ∈ (0,2ν), then JS
λ
(I − τr)

is averaged mapping, see [27]. We now present a strong convergence theorem for approximating common solution of finite

families of equilibrium and monotone variational inclusion problems.

Theorem 4.1. Let h j : Q j ×Q j →R be bifunctions satisfying Assumption 1 and Sk : H → 2H be set valued maximal monotone

operator. Let rk be νk-ism operator in H. Set ν = max{νk}. Take τ ∈ (0,2ν). Suppose
⋂N

j=1 EP(h j,Q)∩ (
⋂M

k=1 Fix(JSk
τ (I −

τrk))) ̸= φ and for any t0, t1 ∈ H,{tn} is defined by

xn = tn − γn(tn − tn−1),

u j
n = argmin

{
1

2κ
j

n
∥y− xn∥2 +h j(xn,y) : y ∈ Q

}
,

v j
n,k = (1−ρkn)xn +ρkn u j

n,

h j(v
j
n,k,xn)−h j(v

j
n,k,u

j
n)≥ φ1

κ
j

n
∥xn −u j

n∥2,

En = {t ∈ H : ∑
N
j=1 α

j
n l j

n(t)≤ 0},

yn = PEn(xn),

tn+1 = θ 1
n φ(tn)+(1−θ 1

n )[θ
2
n yn +∑

M+1
k=3 θ k

n ∏
k−1
i=2 (1−θ i

n)J
Sk−2
τ (I − τrk−2)yn

+∏
M+1
i=2 (1−θ i

n)J
SM
τ (I − τrM)))yn],

where γn,φ1,ρ ∈ (0,1), {κ
j

n} ⊂ [κ, κ̄], where 0 ≤ κ ≤ κ̄ , l j
n(t) =

〈
x j

n, t − v j
n

〉
, where x j

n ∈ ∂h j(v
j
n,v

j
n) for j = 1,2, ...,N. and φ

is a δ - contraction operator defined on H. Also {θ k
n} satisfying the following conditions:
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(i) lim
n→∞

θ 1
n = 0, lim

n→∞

γn
θ 1

n
∥tn − tn−1∥= 0 and ∑

∞
n=0 θ 1

n = ∞,

(ii) liminf
n→∞

θ 2
n > ν where n ∈ N,

(iii) liminf
n→∞

θ k
n ∏

k−1
i=2 (1−θ i

n)> 0 for every k = 3,4, ....M+1 and

liminf
n→∞

∏
M+1
i=2 (1−θ i

n)> 0.

Then {tn} converges strongly to y′ ∈
⋂N

j=1 EP(h j,Q)∩ (
⋂M

k=1 Fix(JSk
τ (I − τrk))).

Proof: Let us take Sk = JSk
τ (I − τrk) for all k ∈ N. Therefore, Sk is averaged mapping and thus nonexpansive. Additionally,

I −Sk is demiclosed at zero. Thus, Theorem 3.6 leads to the conclusion.

Remark 4.2. Cholamjiak [28] Algorithm requires the computation of Cn+1 and the projection of x0 onto Cn+1. If the feasible

set is complex, it may be computationally expensive. Theorem 4.1 generalizes and extends Cholamjiak et al. result [28] from

finite family of monotone inclusion problems to a common solution of finite families of monotone inclusion and equilibrium

problems.

4.2. Variational Inequality Problem. Suppose that H is a real Hilbert space. Let r : H → H be an operator. Assume that Q is

nonempty closed and convex subsets of H, then the variational inequality problem is to identify a point y′ ∈ Q such that〈
r(y′),y− y′

〉
≥ 0 ∀y ∈ Q. (4.2)

We denote the solution set of variational inequality problem by VI(Q,r). If r is β -ism operator on H, it is clear that PQ(I − τr)

is nonexpansive for every τ ∈ (0,2β ). As y′ ∈ Fix(PQ(I − τr)) iff y′ ∈ VI(Q,r), see [27]. We now give a strong convergence

theorem for approximating common solution of finite families of monotone variational inequality and equilibrium problems.

Theorem 4.3. Let h j : Q j ×Q j →R be bifunctions satisfying Assumption 1 and rk be νk-ism operator in H. Set ν = max{νk}.

Take τ ∈ (0,2ν). Suppose
⋂N

j=1 EP(h j,Q)∩ (
⋂M

k=1 V IP(rk,Qk) ̸= φ and for any t0 and t1 ∈ H,{tn} is defined by

xn = tn − γn(tn − tn−1),

u j
n = argmin

{
1

2κ
j

n
∥y− xn∥2 +h j(xn,y) : y ∈ Q

}
,

v j
n,k = (1−ρkn)xn +ρkn u j

n,

h j(v
j
n,k,xn)−h j(v

j
n,k,u

j
n)≥ φ1

κ
j

n
∥xn −u j

n∥2,

En = {t ∈ H : ∑
N
j=1 α

j
n l j

n(t)≤ 0},

yn = PEn(xn),

tn+1 = θ 1
n φ(tn)+(1−θ 1

n )[θ
2
n yn +∑

M+1
k=3 θ k

n ∏
k−1
i=2 (1−θ i

n)PQk−2(I − τrk−2)yn

+∏
M+1
i=2 (1−θ i

n)PQM (I − τrM)yn],

where γn,φ1,ρ ∈ (0,1), {κ
j

n} ⊂ [κ, κ̄], where 0 ≤ κ ≤ κ̄ , l j
n(t) =

〈
x j

n, t − v j
n

〉
, where x j

n ∈ ∂h j(v
j
n,v

j
n) for j = 1,2, ...,N and φ

is a δ -contraction operator defined on H. Also {θ k
n} satisfying the following conditions:

(i) lim
n→∞

θ 1
n = 0, lim

n→∞

γn
θ 1

n
∥tn − tn−1∥= 0 and ∑

∞
n=0 θ 1

n = ∞,

(ii) liminf
n→∞

θ 2
n > ν where n ∈ N,

(iii) liminf
n→∞

θ k
n ∏

k−1
i=2 (1−θ i

n)> 0 for every k = 3,4, ....M+1 and

liminf
n→∞

∏
M+1
i=2 (1−θ i

n)> 0.

Then {tn} converges strongly to y′ ∈
⋂N

j=1 EP(h j,Q)∩ (
⋂M

k=1 V IP(rk,Qk)).

Proof: Let us take Sk = PQk (I−τrk) for all k ∈ N. Therefore, Sk is averaged mapping and thus nonexpansive. Additionally,

I −Sk is demiclosed at zero. Thus, Theorem 3.6 leads to the conclusion.

Remark 4.4. Theorem 4.3 generalizes and extends Hieu’s result [19] from a common solution of pseudomonotone EPs to a

common solution finite families of pseudomonotone EPs and monotone VIPs.
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4.3. Equilibrium Problem. Suppose that Q is a non empty closed, convex subset of real Hilbert space H and r is a bifunction.

Thus equillibrium problem for r is to find a point y′ ∈ Q and r(y′, p′) ≥ 0 for all p′ ∈ Q. EP(r) denotes the solution set of

equillibrium problem.

Assumption 2: We assume that bifunction r satisfies the following conditions:

1. r(y′,y′)≥ 0.

2. r is monotone i.e. r(p′,y′)+ r(y′, p′)≤ 0 for any p′,y′ ∈ Q.

3. For each p′,y′,q′ ∈ Q, limsup
s→0+

r(sq′+(1− s)p′,y′)≤ r(p′,y′).

4. For each p′ ∈ Q,y′ → r(p′,y′) is lower semi-continuous and convex.

We next present an important lemma for solving the equilibrium problem.

Lemma 4.5 ([29]). Assume that r : Q×Q → R is a bifunction satisfying Assumption 2. Let s > 0 and p′ ∈ H, then there is

y′ ∈ Q and

r(q′,y′)+
1
s

〈
y′−q′,q′− p′

〉
≥ 0 for all y′ ∈ Q.

Further if T r
s (p′) = {q′ ∈C : F(q′,y′)+ 1

s ⟨y
′−q′,q′− p′⟩ ≥ 0 ∀y ∈C}, then following statements hold:

1. T r
s is single valued.

2. T r
s is firmly nonexpansive i.e. for any p′,y′ ∈ H

∥T r
s (p′)−T r

s (y
′)∥2 ≤

〈
T r

s (p′)−T r
s (y

′), p′− y′
〉
.

3. Fix(T r
s )=EP(r).

4. EP(r) is convex and closed.

The equilibrium problem can be solved as a fixed point problem, as shown by the above lemma. We now present a strong

convergence theorem for estimating a common solution of finite families of equilibrium and monotone equilibrium problems.

Theorem 4.6. Let h j : Q j ×Q j → R be bifunctions satisfying Assumption 1 and rk : Qk ×Qk → R be bifunctions satisfying

Assumption 2. Suppose
⋂N

j=1 EP(h j,Q)∩ (
⋂M

k=1 EP(rk,Q) ̸= φ and for any t0 and t1 ∈ H,{tn} is defined by

xn = tn − γn(tn − tn−1),

u j
n = argmin

{
1

2κ
j

n
∥y− xn∥2 +h j(xn,y) : y ∈ Q

}
,

v j
n,k = (1−ρkn)xn +ρkn u j

n,

h j(v
j
n,k,xn)−h j(v

j
n,k,u

j
n)≥ φ1

κ
j

n
∥xn −u j

n∥2,

En = {t ∈ H : ∑
N
j=1 α

j
n l j

n(t)≤ 0},

yn = PEn(xn),

tn+1 = θ 1
n φ(tn)+(1−θ 1

n )[θ
2
n yn +∑

M+1
k=3 θ k

n ∏
k−1
i=2 (1−θ i

n)T
rk−2

s yn

+∏
M+1
i=2 (1−θ i

n)T
rM

s yn],

where γn,φ1,ρ ∈ (0,1), {κ
j

n} ⊂ [κ, κ̄], where 0 ≤ κ ≤ κ̄ , l j
n(t) =

〈
x j

n, t − v j
n

〉
, where x j

n ∈ ∂h j(v
j
n,v

j
n) for j = 1,2, ...,N. where

φ is a δ -contraction operator defined on H. Also {θ k
n} satisfying the following conditions:

(i) lim
n→∞

θ 1
n = 0, lim

n→∞

γn
θ 1

n
∥tn − tn−1∥= 0 and ∑

∞
n=0 θ 1

n = ∞,

(ii) liminf
n→∞

θ k
n ∏

k−1
i=2 (1−θ i

n)> 0 for every k = 3,4, ....M+1 and

liminf
n→∞

∏
M+1
i=2 (1−θ i

n)> 0.

Then {tn} converges strongly to y′ ∈
⋂N

j=1 EP(h j,Q)∩ (
⋂M

k=1 EP(rk,Q).

Proof: From Lemma 4.5 T r
s is firmly nonexpansive and thus demicontractive. Hence, one can consider fixed point problem

as equilibrium problem. Subsequently, the conclusion follows from Theorem 3.6 and Lemma 4.5.
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4.4. Multiple-Sets Split Feasiblity Problem. Suppose that D : H1 → H2 is a bounded linear operator. Let Ci(1 ≤ i ≤ N)

and Q j(1 ≤ j ≤ M) be two families of nonempty closed and convex subsets of Hilbert spaces H1 and H2 respectively. Then

multiple-sets split feasibility problem (MSSFP) is to find a point y′ ∈ H1 and

y′ ∈
M⋂

k=1

Ci and Dy′ ∈
P⋂

l=1

Q j. (4.3)

As we know that y′ ∈ Fix(PCk (I−ηH∗(I−PQK )H)) iff y′ ∈C where C is convex, closed subset of Hilbert space H. The solution

set of the multiple-sets split feasibility problem is denoted by ∆. Next, we prove the strong convergence theorem for estimating

common solution of fixed point and multiple-sets split feasibility problems.

Theorem 4.7. Let h j : Q j ×Q j → R be bifunctions satisfying Assumption 1. Suppose
⋂N

j=1 EP(h j,Q)∩∆ ̸= φ and for any

t0, t1 ∈ H,{tn} is defined by

xn = tn − γn(tn − tn−1),

u j
n = argmin

{
1

2κ
j

n
∥y− xn∥2 +h j(xn,y) : y ∈ Q

}
,

v j
n,k = (1−ρkn)xn +ρkn u j

n,

h j(v
j
n,k,xn)−h j(v

j
n,k,u

j
n)≥ φ1

κ
j

n
∥xn −u j

n∥2,

En = {t ∈ H : ∑
N
j=1 α

j
n l j

n(t)≤ 0},

yn = PEn(xn),

tn+1 = θ 1
n φ(tn)+(1−θ 1

n )[θ
2
n yn +∑

M+1
k=3 θ k

n ∏
k−1
i=2 (1−θ i

n)PCk−2(I −ηH∗(I −PQk−2)H)yn

+∏
M+1
i=2 (1−θ i

n)PCM (I −ηH∗(I −PQM )H)yn],

where γn,φ1,ρ ∈ (0,1), {κ
j

n} ⊂ [κ, κ̄], where 0 ≤ κ ≤ κ̄ , l j
n(t) =

〈
x j

n, t − v j
n

〉
, where x j

n ∈ ∂h j(v
j
n,v

j
n) for j = 1,2, ...,N. and φ

is a δ -contraction operator defined on H. Also {θ k
n} satisfying the following conditions:

(i) lim
n→∞

θ 1
n = 0, lim

n→∞

γn
θ 1

n
∥tn − tn−1∥= 0 and ∑

∞
n=0 θ 1

n = ∞,

(ii) liminf
n→∞

θ 2
n > ν where n ∈ N,

(iii) liminf
n→∞

θ k
n ∏

k−1
i=2 (1−θ i

n)> 0 for every k = 3,4, ....M+1 and

liminf
n→∞

∏
M+1
i=2 (1−θ i

n)> 0.

Then {tn} converges strongly to y′ ∈
⋂N

j=1 EP(h j,Q)∩∆.

Proof: Let us take Sk = PCk (I −ηH∗(I −PQK )H) for all k ∈ N. Therefore, Sk is averaged mapping and thus nonexpansive.

Additionally, I −Sk is demiclosed at zero. Thus, Theorem 3.6 leads to the conclusion.

Remark 4.8. Theorem 4.7 extends and generalizes Yao’s result [30] from weak convergence to strong convergence.

4.5. Multiple-Sets Split Common Null Point Problem. Suppose that L : H1 →H2 is a bounded linear operator. Let Nk : H1 →

2H1 and Kl : H2 → 2H2 be two set valued operators, where H1 and H2 are two Hilbert spaces and 1 ≤ k ≤ M and 1 ≤ l ≤ P. The

multiple-sets split common null point problem is to find y′ ∈ H1 and

0 ∈
M⋂

k=1

Nk(y
′) and p′ = Ly′ solves 0 ∈

P⋂
l=1

Kl(p′). (4.4)

The solution set is denoted by ∆. We know that 0 ∈ ∆ iff y′ ∈ Fix(JNk
η (I−ηL∗(I−JKl

η )L)), where JN
η = (I+ηN)−1 is resolvent

operator. Also, if η > 0, then JNk
η (I−ηL∗(I−JKl

η )L) is nonexpansive mapping, see [31]. We now present a strong convergence

theorem for approximating common solution of finite family of equilibrium, SCNPP for multiple sets problems.
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Theorem 4.9. Let h j : Q j ×Q j → R be bifunctions satisfying Assumption 1 and Nk : H → 2H be maximal monotone operator.

Suppose
⋂N

j=1 EP(h j,Q)∩∆ ̸= φ and for any t0, t1 ∈ H,{tn} is defined by

xn = tn − γn(tn − tn−1),

u j
n = argmin

{
1

2κ
j

n
∥y− xn∥2 +h j(xn,y) : y ∈ Q

}
,

v j
n,k = (1−ρkn)xn +ρkn u j

n,

h j(v
j
n,k,xn)−h j(v

j
n,k,u

j
n)≥ φ1

κ
j

n
∥xn −u j

n∥2,

En = {t ∈ H : ∑
N
j=1 α

j
n l j

n(t)≤ 0},

yn = PEn(xn),

tn+1 = θ 1
n φ(tn)+(1−θ 1

n )[θ
2
n yn +∑

M+1
k=3 θ k

n ∏
k−1
i=2 (1−θ i

n)J
Nk−2
η (I −ηL∗(I − JKl

η )L)yn

+∏
M+1
i=2 (1−θ i

n)J
NM
η (I −ηL∗(I − JKl

η )L)yn],

where γn,φ1,ρ ∈ (0,1), {κ
j

n} ⊂ [κ, κ̄], where 0 ≤ κ ≤ κ̄ , l j
n(t) =

〈
x j

n, t − v j
n

〉
, where x j

n ∈ ∂h j(v
j
n,v

j
n) for j = 1,2, ...,N and φ

is a δ -contraction operator defined on H. Also {θ k
n} satisfying the following conditions:

(i) lim
n→∞

θ 1
n = 0, lim

n→∞

γn
θ 1

n
∥tn − tn−1∥= 0 and ∑

∞
n=0 θ 1

n = ∞,

(ii) liminf
n→∞

θ 2
n > ν where n ∈ N,

(iii) liminf
n→∞

θ k
n ∏

k−1
i=2 (1−θ i

n)> 0 for every k = 3,4, ....M+1 and

liminf
n→∞

∏
M+1
i=2 (1−θ i

n)> 0.

Then {tn} converges strongly to y′ ∈
⋂N

j=1 EP(h j,Q)∩∆.

Proof: Let us take Sk = JNk
η (I − ηL∗(I − JKl

η )L) for all k ∈ N. Therefore, Sk is nonexpansive. Additionally, I − Sk is

demiclosed at zero. Thus, Theorem 3.6 leads to the conclusion.

Remark 4.10. Reich and Tuyen [32] method requires to compute three sets Cn, Dn, Wn, their intersection and projection of x0 at

each step, which is expensive and time consuming if the feasible set is complex. We do not require such computation. Theorem

4.9 generalizes and extends Reich and Tuyen result [32] from split null point problem to common solution of multiple-sets split

null point problem and finite family of equilibrium problem.

5. NUMERICAL EXAMPLE

The numerical studies presented in this section show that Algorithm 3.1 is more effective than Wairojjana Alg in [33] and

Jolaoso Alg in [17].

Example 5.1. Suppose that the bifunctions h j : Q×Q → R is defined as h j(x,y) =
〈
Pjx+Q jy+q j,y− x

〉
where j = 1,2,

Q = {x ∈ R5 : −4 ≤ x j ≤ 4, j = 1,2,3,4,5}, q j ∈ R5 and Pj,Q j ∈ R5×5 are two matrices of order 5 taken same as in [34] and

H = R5. The bifunction h j is Lipschitz-type continuous with constants L1 = L2 = 1
2∥Q j −Pj∥, see [11, 34] and satisfy the

Assumption 1. Take P1 = P2,Q1 = Q2,q1 = q2, φ1 = 0.001, α
j

n = 1/2, γ = 0.1, τn = 1
n2 for j = 1,2 and ρ = 0.00005. Take

M = N = 2, we can choose a contraction mapping p : Q → Q as p(x) = x
4 for all x ∈ Q and two demicontractive mappings

Uk : Q → Q as Uk(x) = −2kx
k+1 for all x ∈ Q,k = 1,2 where x = (x1,x2,x3,x4,x5)

T. Clearly, the solution set is non empty and

0 ∈
⋂2

k=1 Fix(Uk)
⋂⋂2

j=1 EP(h j,Q).

Let θ k
n =

49(k2−1)n2+13n
51[(nk)2+1] and take ∥tn−1 − tn∥ < 10−4 as stopping criterion. We also provide numerical findings for the

following t0 and t1 values.

Case 1: t0 = (2,2,2,2,2)T , t1 = (5,5,5,5,5)T ;

Case 2: t0 = (20,20,20,20,20), t1 = (50,50,50,50,50)T ;

Case 3: t0 = (200,200,200,200,200)T , t1 = (500,500,500,500,500)T ;

Case 4: t0 = (2000,2000,2000,2000,2000)T , t1 = (5000,5000,5000,5000,5000)T .
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We also show that Algorithm (Alg) 3.1 is more effective than Wairojjana Alg in [33] and Jolaoso Alg in [17]. We plot the

graphs of number of iterations n with errors ∥tn−1 − tn∥. Tables 1-2 and Figures 1-2 show the numerical results.

Algorithm Iterations Number Time (Seconds)

Alg 3.1 13 0.04083

Wairojjana Alg 31 0.2606

Lateff Alg 88 0.7235

TABLE 1. Comparison of Alg 3.1 with Wairojjana Alg [33] and Jolaoso Alg [17] when

t0 = (2,2,2,2,2)T , t1 = (5,5,5,5,5)T

0 10 20 30 40 50 60 70 80 90

Iteration Number (n)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

||
t n

-t
n

-1
||

Alg 3.1

Lateff Alg

Wairojjana Alg

FIGURE 1. Comparison of Alg 3.1 with Wairojjana Alg [33] and Jolaoso Alg [17] when

t0 = (2,2,2,2,2)T , t1 = (5,5,5,5,5)T

Cases Iteration Number Time (Seconds)

1 13 0.04083

2 16 0.4975

3 18 0.5708

4 21 0.7905

TABLE 2. Example 5.3: Numerical study of Alg 3.1 for different values of t0 and t1.

0 5 10 15 20 25

Number of Iterations (n)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

||
t n

-t
n

-1
||

Case1

Case2

Case3

Case4

FIGURE 2. Example 5.3: Numerical study of Alg 3.1 for different values of t0 and t1

Example 5.2. Suppose that the bifunctions h j : Q×Q → R is defined as h j(x,y) = (3−∥x∥)⟨x,y− x⟩ where j = 1,2, H = l2

be a real Hilbert space with the inner product ∥.∥ : l2 → R and ⟨., .⟩ : l2 × l2 → R are defined as ∥x∥ = (∑∞
k=1 |xk|2)

1
2 and

⟨x,y⟩ = ∑
∞
k=1 xkyk, where x = {xk}∞

k=1, y = {yk}∞
k=1 and Q = {x ∈ H : ∥x∥ ≤ 1}. Take M = 2. Let a contraction mapping

p : Q → Q be defined as p(x) = x
4 for all x ∈ Q and two demicontractive mappings Uk : K → K be defined as Uk(x) = −2kx

k+1 for
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all x ∈ Q,k = 1,2 where x = (x1,x2, ...,xk, ...),xk ∈R. Clearly bifunctions h j for j = 1,2 satisfy Assumption 1 and the solution

set is non empty. Also, 0 ∈
⋂2

k=1 Fix(Uk)
⋂⋂2

j=1 EP(h j,Q). Let θ k
n =

49(k2−1)n2+13n
51[(nk)2+1] and use ∥tn−1 − tn∥ < 10−4 as stopping

criterion. Take γ = 0.1, τn =
1
n2 , φ1 = 0.001, α

j
n = 1/2 for j = 1,2 and ρ = 0.00005. We compare the numerical result of Alg

3.1 with Wairojjana Alg [33] and Jolaoso Alg [17]. We also provide numerical findings for the following t0 and t1 values.

Case 1: t0 = (1,1,1,10,10,0,0, ..., ...), t1 = (4,4,4,40,40,0,0, ..., ...);

Case 2: t0 = (10,10,10,100,100,0,0, ..., ...), t1 = (40,40,40,400,400,0,0, ..., ...);

Case 3: t0 = (1,1,0,0,0,0,0, ..., ...), t1 = (4,4,400,7000,4000,0,0, ..., ...);

Case 4: t0 = (1,1,0,0,0,0,0, ..., ...), t1 = (4,4,400,40000,4000,0,0, ..., ...).

We also show that Algorithm (Alg) 3.1 is more effective than Wairojjana Alg in [33] and Jolaoso Alg in [17]. We plot the

graphs of number of iterations n with errors ∥tn−1 − tn∥. Tables 3-4 and Figures 3-4 show the numerical results.

Algorithm number of iterations Time (Seconds)

Alg 3.1 16 0.1596

Lateef Alg 73 0.9678

Wairojjana Alg 459 1.5156

TABLE 3. Comparison of Alg 3.1 with Wairojjana Alg [33] and Jolaoso Alg [17] when

t0 = (1,1,1,10,10,0,0, ..., ...), t1 = (4,4,4,40,40,0,0, ..., ...)

0 100 200 300 400 500

Number of Iterations (n)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

||
t n

-t
n

-1
||

Alg 3.1

Jolaoso Alg

Wairojjana Alg

FIGURE 3. Comparison of Alg 3.1 with Wairojjana Alg [33] and Jolaoso Alg [17] when

t0 = (1,1,1,10,10,0,0, ..., ...), t1 = (4,4,4,40,40,0,0, ..., ...)

Cases number of iterations Execution Time in Seconds

1 16 0.1596

2 17 0.1981

3 19 0.8073

4 21 1.1999

TABLE 4. Example 5.3: Numerical study of Alg 3.1 for different values of t0 and t1.
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FIGURE 4. Numerical study of Alg 3.1 for different values of t0 and t1.

Example 5.3. Suppose that the bifunctions h j : Q×Q → R is defined as h j(x,y) = ∑
5
i=2(yi − xi)∥x∥ where j = 1,2, Q = {x ∈

R5 : x1 ≥ −1,xi ≥ 0, i = 2,3,4,5}. The bifunctions h j is Lipschitz continuous with L1 = L2 = 2; see [35]. Take φ1 = 0.001,

α
j

n = 1/2, γ = 0.1, τn = 1
n2 for j = 1,2 and ρ = 0.00005. Take M = N = 2, we can choose a contraction mapping p : Q → Q

as p(x) = x
4 for all x ∈ Q and two demicontractive mappings Uk : Q → Q as Uk(x) = −2kx

k+1 for all x ∈ Q,k = 1,2 where

x = (x1,x2,x3,x4,x5)
T. Clearly, the solution set is non empty and 0 ∈ (

⋂2
k=1 Fix(Uk))

⋂
(
⋂2

j=1 EP(h j,Q)).

Let θ k
n =

49(k2−1)n2+13n
51[(nk)2+1] and take ∥tn−1 − tn∥ < 10−4 as stopping criterion. We also provide numerical findings for the

following t0 and t1 values.

Case 1: t0 = (1,1,1,1,1)T , t1 = (5,5,5,5,5)T ;

Case 2: t0 = (10,10,10,10,10), t1 = (50,50,50,50,50)T ;

Case 3: t0 = (100,100,100,100,100)T , t1 = (500,500,500,500,500)T ;

Case 4: t0 = (1000,1000,1000,1000,1000)T , t1 = (5000,5000,5000,5000,5000)T .

We also show that Algorithm (Alg) 3.1 is more effective than Wairojjana Alg in [33] and Jolaoso Alg in [17]. We plot the

graphs of number of iterations n with errors ∥tn−1 − tn∥. Tables 5-6 and Figures 5-6 show the numerical results.

Algorithm number of iterations Time (Seconds)

Alg 3.1 20 0.9995

Lateef Alg 80 1.5690

Wairojjana Alg 183 2.1586

TABLE 5. Comparison of Alg 3.1 with Wairojjana Alg [33] and Jolaoso Alg [17] when

t0 = (1000,1000,1000,1000,1000)T , t1 = (5000,5000,5000,5000,5000)T
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Number of Iterations(n)

0

0.01

0.02

0.03

0.04

0.05
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FIGURE 5. Comparison of Alg 3.1 with Wairojjana Alg [33] and Jolaoso Alg [17] when

t0 = (1000,1000,1000,1000,1000)T , t1 = (5000,5000,5000,5000,5000)T
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Cases number of iterations Execution Time in Seconds

1 6 0.0706

2 7 0.7990

3 13 0.9976

4 20 0.9995

TABLE 6. Example 5.3: Numerical study of Alg 3.1 for different values of t0 and t1.
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FIGURE 6. Numerical study of Alg 3.1 for different values of t0 and t1.
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