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NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE
FRACTIONAL DERIVATIVE

JIA WEI HE AND YONG ZHOU

ABSTRACT. In this paper, we study a Cauchy problem for non-autonomous evolution equations with
Riemann-Liouville fractional derivative. We propose two different concepts of fundamental solutions
and classical solutions corresponding to the homogeneous problem. We also prove some existence
results of non-homogeneous Cauchy problem. Our methods rely upon analytic semigroup theory, the
Mittag-Leffler function and a variation of parameters formula. As an application, we apply the main
results to a time dependent fractional Schrödinger type equation.

1. Introduction

The classical autonomous evolution equations have provided an important manner to solve mathe-
matical models in science and engineering. Among various models containing many concrete non-
local problems or memory characteristics of materials, fractional calculus has been proven as one
of the most efficient analysis tools, such as in anomalous diffusion [23, 34, 39], control theory and
engineering [24, 32, 33], viscoelasticity [26, 30], Hamiltonian chaos [40], biophysics [21], impul-
sive systems [11] and several other areas. Nevertheless, many evolution equations play an important
role in mathematical research driven by the time-varying parameters, a non-autonomous evolution
equation becomes the main equation for studying this issue, see e.g. [1, 17]. When considering a
nonlocal problems or a memory characteristic of materials with time-varying parameters described
by the fractional derivative, there are still many difficulties and challenges in obtaining the qualitative
properties of these non-autonomous models. In particular, we remark that the structure of solutions
for non-autonomous fractional evolution equations is not obvious, while the cases of integer orders
are also natural to construct by an evolution operator, which provides great convenience in defining
and establishing the properties of mild solutions or classical solutions. Moreover, when studying the
solutions to non-autonomous fractional evolution equations, the useful Laplace transform for study-
ing autonomous type equations is not as applicable. To overcome this difficulty, the technique of a
variation of parameters formula will be proposed.

A common mathematical physics model ∂ α
t x = a(t)∆x, t > 0, is represented by a fractional evo-

lution equation with time-varying parameters, where ∆ is the Laplace operator, ∂ α
t is the Caputo
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fractional derivative of order α ∈ (0,2), and a(·) : R+ → R+ is a continuous function. If a(·) reduces
to a constant function, this model of order α ∈ (0,1) can simulate anomalous diffusion phenomena,
ensuring the behavior of a subdiffusion process [27]. For the case of order α ∈ (1,2), it will ensure the
behavior of a superdiffusion process in anomalous diffusion phenomena [3, 12]. Several abstract theo-
ries, such as semigroup theory, cosine family theory, and resolvent family theory, will be more useful
in obtaining the qualitative properties of this model, see e.g. [13, 14, 15, 36, 37, 41, 42]. Replacing
a(t) by A(t), a more general closed linear operator, was considered in [4] for A(t) = C(t)∆ with a
bounded linear operator C(·), in [35] for A(t) = div(B(t, ·)D) with coefficient matrix B(t, ·) and first
order partial derivative operator D, and in [20] for A(t) = L(t) with a general second order uniform
elliptic operator of the main part form ∑d

i, j=1 Di(ai, j(t, ·)D j). In particular, closer to this current work,
the existence of solution for fractional Löwner-Kufarev equation

L
0D

α
t x(t,z) = zF(t,z)xz(t,z), 0J1−α

t x(0,z) = x0(z), α ∈ (0,1),

was obtained on Hilbert space with a unit disk by Bajlekova [4], where L
0D

α
t is the Riemann-Liouville

fractional derivative of order α ∈ (0,1), 0J1−α
t is the Riemann-Liouville fractional integral of order

1−α , (see Definitions 7-8), and F(t,z), x0(z) are analytic functions. More recently, Mahdi [25]
proved maximal Lp-regularity results in the context of Hilbert spaces. He and Zhou [12] established
the existence and uniqueness of solutions for a non-autonomous fractional evolution equation of order
α ∈ (1,2) in a more general Banach space.We also remark that there are several excellent works
on time-variable coefficient parabolic partial differential equations. Kim et al. [19] proved unique
solvability for the following evolution equations with the Caputo fractional derivative

−∂ α
t u+ai j(t,z)Di ju+bi(t,z)Diu+ c(t,z)u = f (t,z,u), t > 0, z ∈ Rd.

Here α ∈ (0,2), the indices i, j move from 1 to d, Di,Di j are the derivatives respect to z. The co-
efficients ai j(t,z) are piecewise continuous in t and uniformly continuous in z, and the lower order
coefficients bi and c are only bounded measurable functions. Dong and Kim [8] generalized the re-
sults in [19] associated with the coefficients ai j(t,z) satisfying the uniform ellipticity condition and
having no regularity in the time variable for the parabolic regime α ∈ (0,1), as well as the weighted
mixed-norm estimates and solvability in non-divergence form in [9]. Dong and Liu [10] improved
the weighted mixed-norm estimate and solvability in non-divergence form under the coefficients with
locally small mean oscillations.

Inspired by the above works, we are interested in the solvability of Cauchy problem for the follow-
ing non-autonomous fractional evolution equation

(1) L
sD

α
t x(t)+A(t)x(t) = f (t), sJ1−α

t x(s) = xs, t ∈ (s,T ],

where operator A(t) generates an analytic semigroup Tt(ς), ς ≥ 0, for each t ∈ [s,T ] with s ≥ 0, non-
homogeneous function f : (s,T ]→ X is Hölder continuous, and X is usual Banach space. To derive
the main results, we will separate the Cauchy problem into its homogeneous and non-homogeneous
components. These results exhibit novelties in three distinct aspects.

(a) We discuss the structure of solutions, introducing two distinct concepts: fundamental solutions
and classical solutions. Specifically, this is the first time the concept of fundamental solutions has
been considered for the current problem. While these two concepts may appear different, they are, in
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fact, compatible. Through careful analysis, we observe that fundamental solutions exhibit a singular
value at the initial time. This situation can pose significant challenges in finding a solution.

(b) In the context of first order non-autonomous evolution equations, the evolution operator U(t,s)
plays a crucial role in representing solutions. This operator also possesses a generalized semigroup
property, namely U(t,s) = U(t,r)U(r,s) for s ≤ r ≤ t. Leveraging this property, we can delve into
the solvability and stability of solutions. Notably, in a specific scenario, the evolution operator U(t,s)
can degenerate into a one parameter semigroup T (t) within the framework of an autonomous setting.
However, we find that fundamental solution does not possess the generalized semigroup property
of evolution operator. Fortunately, the fundamental solution can degenerate into a solution operator
Tα(t) corresponding to the autonomous fractional evolution equations, as seen in Remark 26, notably,
even this solution operator Tα(t) does not possess a semigroup property. Relied on time-variable
operator A(t), the solution exhibits several new characteristics. For instance, a solution admits uniform
continuity but displays a weak singularity at the initial time. Furthermore, the representation of formal
solutions bears a stronger resemblance to that of first-order evolution equations or fractional-order
evolution equations.

(c) If considered Ω by a bounded open subset of Rd with regular boundary ∂Ω, problem (1) can be
regarded as an abstract version of parabolic type partial differential equation

L
sD

α
t x(t,z)+A(t,z,D)x(t,z) = f (t,z), for (t,z) ∈ (s,T ]×Ω,

in Lp(Ω), where A(t,z,D) is a linear uniform strongly elliptic operator with coefficients depending on
t ∈ [s,T ] and z ∈ Ω, satisfying

A(t,z,D) = ∑
|β |≤2m

aβ (t,z)D
β ,

and there is a constant c > 0, for every z ∈ Ω, t ∈ [s,T ] and ξ ∈ Rd such that

(−1)mRe ∑
|β |=2m

aβ (t,x)ξ β ≥ c|ξ |2m,

where the coefficients aβ (t,z) (|β | ≤ 2m) are smooth functions of variable z in Ω for every t ∈ [s,T ]
and satisfy for some constants C > 0 and 0 < ϑ ≤ 1

|aβ (t,z)−aβ (τ,z)| ≤C|t − τ|ϑ , z ∈ Ω, τ, t ∈ [s,T ].

Although the requirements of coefficients aβ (t,z) are somewhat stricter than those considered in [8,
19, 20], where the authors considered piecewise continuous or merely measurable coefficients, the
Hölder continuity of the coefficients aβ (t,z) is advantageous for analyzing the existence of solutions
to an abstract problem. However, the results we obtained may be more applicable to practical issues,
not just in terms of the solvability of fractional parabolic problem, but also in regards to the regularity
of solutions. Taking these factors into account, we shall address the solvability to problem (1) using
the operator A(t) that generates an analytic semigroup Tt(ς), for ς ≥ 0. Additionally, if the function
f is Hölder continuous, the current parabolic-type partial differential equation with initial value x0 ∈
Lp(Ω) is solvable, and it possesses a unique classical solution.
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The remaining part of the paper is organized as follows. In Sect. 2 we give a brief overview of
the preliminaries of fractional derivatives, we summarize some properties of Riemann-Liouville frac-
tional derivative and two special functions. In Sect. 3, we first establish the existence of solutions for
linear bounded operators. Subsequently, we construct a solution operator for linear unbounded oper-
ators. Furthermore, we provide a thorough analysis of pertinent properties. Leveraging the concept
of fundamental solutions, we demonstrate their existence and provide a solvability result for classical
solutions in the homogeneous case. In Sect. 4, we prove the existence of classical solutions for the
Cauchy problem (1). In Sect. 5, an application is presented to illustrate the main results.

2. Preliminaries

The purpose of this section is to briefly introduce some notations, definitions, and preliminary facts
including fractional derivative and integral, two special functions, for more details, we refer to see
[18, 32, 41]. We set X by a Banach space equipped with the norm ∥ · ∥, D(A) ⊂ X stands for the
domain of the operator A with the graph norm ∥x∥A = ∥x∥+ ∥Ax∥ for all x ∈ D(A). Denote B(X)
by the Banach space of all linear bounded operators from X to X equipped with norm ∥ · ∥B of the
uniform operator topology. Throughout this paper, we set C > 0 by some genetic constant.

Let ∗ denote the convolution for functions f ,g ∈ L1(0,T ;X) as follows

( f ∗g)(t) =
∫ t

0
f (t − τ)g(τ)dτ, t > 0.

Let gα(·) be the Riemann-Liouville fractional kernel of order α ∈R+ defined by gα(t) = tα−1/Γ(α),
for t > 0, where Γ(·) is the usual Gamma function. By a simple calculation, for any α,ς > 0, it
follows that (gα ∗gς )(t − s) = gα+ς (t − s), for t > s ≥ 0, i.e.,

(2)
1

Γ(α)Γ(ς)

∫ t

s
(t − τ)α−1(τ − s)ς−1dτ =

1
Γ(α + ς)

(t − s)α+ς−1, t > s.

Let us recall the Mittag-Leffler function Eα,σ (·) for α > 0, σ ∈ R.

Definition 1. An entire function Eα,σ (·) : C→C is called a Mittag-Leffler function for α > 0, σ ∈R,
given by

Eα,σ (z) =
∞

∑
k=0

zk

Γ(αk+σ)
z ∈ C.

Noting that for 0 < α < 2, σ ∈ R, πα/2 < ω < min(π,απ), N ≥ 1, Podlubny [32, pp.32-34]
proved the asymptotic expansion of Eα,σ (z) as z → ∞ by

Eα,σ (z) =


1
α

z
1−σ

α ez
1
α
+ εα ,σ (z), if |argz| ≤ ω,

εα ,σ (z), if ω ≤ |argz| ≤ π,
where

εα ,σ (z) =−
N−1

∑
k=1

z−k

Γ(σ −αk)
+O(|z|−N), as z → ∞.

By this asymptotic expansion, the following two properties hold, see Podlubny [32, Theorem 1.5 and
Theorem 1.6].

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10 Feb 2024 08:57:32 PST
230130-Zhou Version 4 - Submitted to Rocky Mountain J. Math.



NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 5

Lemma 2. If 0 < α < 2 and σ ∈ R, πα/2 < ω < min(π,απ), then

|Eα,σ (z)| ≤
C

1+ |z|
, z ∈ C, ω ≤ |argz| ≤ π.

Lemma 3. If 0 < α < 2 and σ ∈ R, πα/2 < ω < min(π,πα), then

|Eα,σ (z)| ≤C(1+ |z|)
1−σ

α e
(

Rez
1
α
)
+

C
1+ |z|

, z ∈ C, |argz| ≤ ω.

Remark 4. In particular, from the asymptotic expansion of Eα,σ (z), it follows that Eα,σ (z) = εα ,σ (z)
for ω ≤ |argz| ≤ π as z → ∞, taking N = 2 in εα ,σ (·), it yields

εα ,σ (z) =− z−1

Γ(σ −α)
+O(|z|−2), as z → ∞.

It is notice that if σ −α = −n, (n = 0,1,2, · · ·), and taking into account the well-known property of
the Gamma function

1
Γ(−n)

= 0, n = 0,1,2, · · · ,

then there holds

|Eα,σ (z)| ≤
C

1+ |z|2
, z ∈ C, ω ≤ |argz| ≤ π.

See [22, Remark 2.2] for example.

An entire function closely associated with Mittag-Leffler function is the Wright type function.

Definition 5. An entire function ζα(·) : C→ C is called a Wright type function for α ∈ (0,1), given
by

ζα(z) =
∞

∑
n=0

(−z)n

n!Γ(1−α(n+1))
, z ∈ C.

From the definition of Wright type function, the following properties hold.

Lemma 6. [41] For any α ∈ (0,1), there hold
(i): ζα(υ)≥ 0, where υ ∈ [0,∞);

(ii):
∫ ∞

0
ζα(υ)e−zυdυ = Eα,1(−z), z ∈ C;

(iii):
∫ ∞

0
αυζα(υ)e−zυdυ = Eα,α(−z), z ∈ C;

(iv): for −1 < δ < ∞, it yields∫ ∞

0
υδ ζα(υ)dυ =

Γ(1+δ )
Γ(1+αδ )

.

We mention that the following two identities from Lemma 6 (iv) will be useful throughout this
paper.

(3)
∫ ∞

0
ζα(υ)dυ = 1,

∫ ∞

0
αυζα(υ)dυ =

1
Γ(α)

.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10 Feb 2024 08:57:32 PST
230130-Zhou Version 4 - Submitted to Rocky Mountain J. Math.



NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 6

Definition 7. Let α > 0. For any 0 ≤ s < t ≤ T , a function x ∈ L1(s,T ;X) denotes the Riemann-
Liouville fractional integral of order α by

sJα
t x(t) =

1
Γ(α)

∫ t

s
(t − τ)α−1x(τ)dτ, t > s.

Definition 8. Let α > 0. For any 0 ≤ s < t ≤ T , a function x ∈ L1(s,T ;X) with sJn−α
t x ∈W n,1(s,T ;X)

is called the Riemann-Liouville fractional derivative of order α by

L
sD

α
t x(t) =

dn

dtn sJn−α
t x(t), t > s,

where n = [α]+1, [α] means the integer part of α .

It is obvious that sJα
t x(t) = x(t) as α → 0 as well as L

sD
α
t x(t) = x′(t) as α → 1. We recall that the

definition of Caputo’s fractional derivative of order α ∈ (0,2), that is, for a function x ∈Cn([s,T ],X)
and sJn−α

t x ∈W n,1(s,T ;X), n = [α]+1, where W n,1(s,T ;X) stands for the space of functions x such

that x(n) ∈ L1(s,T ;X), the derivative is given by ∂ α
t x(t) = L

sD
α
t

(
x(t)−

n−1
∑

k=0

xk(s)
k! (t − s)k

)
, in which ∂ α

t x

and L
sD

α
t x are equivalent if x(k)(s) = 0 for k = 0, · · · , [α]. Using the properties of fractional calculus

and taking the Mittag-Leffler functions of item by item integration for α ∈ (0,1), ω ∈ C, we have

(4)
sJ1−α

t ((t − s)α−1Eα,α(ω(t − s)α)) =Eα,1(ω(t − s)α), t > s,
L
sD

α
t ((t − s)α−1Eα,α(ω(t − s)α)) =ω(t − s)α−1Eα,α(ω(t − s)α), t > s.

3. A linear problem

In this section, we discuss some properties for a linear problem of (1). Next, we get an existence
result of problem (1) when operator A(·) ∈ B(X). In particular, there is no assumption on the density
of the domain of A(t) for all t ∈ [0,T ].

Lemma 9. The Cauchy problem (1) is equivalent to the integral equation

(5) x(t) = gα(t − s)xs +
∫ t

s
gα(t − τ)(−A(τ)x(τ)+ f (τ))dτ,

for 0 ≤ s < t ≤ T provided that (5) exists.

Proof. Similarly to [41, Theorem 4.1], the proof is easy to check, so we omit it here. �

Definition 10. An X-valued function x is called a classical solution of problem (1) if x is continuous
on (s,T ] with L

sD
α
t x ∈C((s,T ],X), and it belongs to D(A(t)) for every t ∈ [s,T ] satisfying problem (1).

3.1. Linear bounded operator. Based on Lemma 9, we have an immediate result associated with the
linear bounded operator A(·). For this purpose, we introduce a Banach space Cα([s,T ],X) that is the
weighted continuous function space defined by

Cα([s,T ],X) :=
{

x ∈C((s,T ],X) : lim
t→s+

(t − s)1−α∥x(t)∥ exists and is finite
}
,

equipped with the norm ∥x∥α = supt∈[s,T ](t − s)1−α∥x(t)∥.
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Theorem 11. Let X be a Banach space and let A(t) be a bounded linear operator on X for every
s ≤ t ≤ T . If f ∈ C([s,T ],X) and the map t 7→ A(t) is continuous in the uniform operator topology,
then for every x0 ∈ X, problem (1) has a unique classical solution x in Cα([s,T ],X).

Proof. Clearly, Cα([s,T ],X) is a subset of C((s,T ],X), it suffices to check the conclusion in Cα([s,T ],X).
We will use the Picard method to establish this result. Let ρA = sup{∥A(t)∥B, t ∈ [s,T ]} and define a
mapping T on Cα([s,T ],X) by

(6) (T x)(t) = gα(t − s)xs +
∫ t

s
gα(t − τ)(−A(τ)x(τ)+ f (τ))dτ.

We first check that T maps Cα([s,T ],X) into itself. For x ∈Cα([s,T ],X), one has

(7) ∥(T x)(t)∥ ≤ gα(t − s)∥xs∥+
∫ t

s
gα(t − τ)(ρA(τ − s)α−1∥x∥α +∥ f (τ)∥)dτ.

Using (2), we deduce that

∥T x∥α ≤ 1
Γ(α)

∥xs∥+
ρAΓ(α)

Γ(2α)
(T − s)α∥x∥α +

(T − s)
Γ(α +1)

∥ f∥∞,

where ∥ f∥∞ = sup{∥ f (t)∥, t ∈ [s,T ]} is the norm of C([s,T ];X), and then ∥T x∥α < ∞. Moreover,
we know that gα(t − s)xs belongs to x ∈Cα([s,T ],X), by the boundedness of operator A(·), it is easy
to verify that T x ∈Cα([s,T ],X). Additionally, by induction from (2) and (6) we have

∥(T nx)(t)− (T ny)(t)∥ ≤
ρn

AΓ(α)

Γ((n+1)α)
(t − s)(n+1)α−1∥x− y∥α ,

therefore,

∥T nx−T ny∥α ≤
ρn

AΓ(α)

Γ((n+1)α)
(T − s)nα∥x− y∥α .

Since there exists a positive integer n̂ enough large such that

ρ n̂
AΓ(α)

Γ((n̂+1)α)
(t − s)n̂α ≤

ρ n̂
AΓ(α)

Γ((n̂+1)α)
(T − s)n̂α < 1,

by a well known generalization of the Banach contraction principle, T has a unique fixed point x∗ in
Cα([s,T ],X) for which

(8) x∗(t) = gα(t − s)xs +
∫ t

s
gα(t − τ)(−A(τ)x∗(τ)+ f (τ))dτ.

Since x∗ is continuous, from Lemma 9, sJ1−α
t x∗ exists and we obtain that sJ1−α

t x∗ is absolutely con-
tinuous. Thus sJ1−α

t x∗ is differentiable, and taking its derivative yields
L
sD

α
t x∗(t)+A(t)x∗(t) = f (t).

Moreover, sJ1−α
t x∗(t) = xs as t → s, and it is easy to derive that L

sD
α
t x∗ ∈C((s,T ],X) and x∗ ∈ D(A(t))

for all t ∈ [s,T ] for every xs ∈X by the same arguments. Hence, x∗ is a classical solution of the Cauchy
problem (1). Since every solution of (1) is also a solution of (8), the solution of (1) is unique. Thus, we
get that x∗ ∈Cα([s,T ],X) is a unique classical solution to problem (1). The proof is completed. �

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10 Feb 2024 08:57:32 PST
230130-Zhou Version 4 - Submitted to Rocky Mountain J. Math.



NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 8

3.2. Linear unbounded operators. In this subsection, we shall discuss the case of linear unbounded
operator, where −A(t) is an infinitesimal generator of analytic semigroup Tt(ς) on the Banach space
X for all ς ≥ 0 and every t ∈ [0,T ]. To achieve to our goals, we will need the following assumptions,
see e.g. [1]:

(P1): the domain D(A(t)) = D(A ) of A(t), 0 ≤ t ≤ T is dense in X , and it is independent of t;
(P2): for t ∈ [0,T ], the resolvent R(λ ;A(t)) of A(t) exists for all λ with Reλ ≤ 0 and there is a

constant C > 0 such that

(9) ∥R(λ ;A(t))∥B ≤ C
|λ |+1

, for Reλ ≤ 0, t ∈ [0,T ];

(P3): (Acquistapace-Terremi’s condition) there exist two constants L > 0 and 0 < ϑ ≤ 1 such
that

(10) ∥(A(t)−A(τ))A(r)−1∥B ≤ L|t − τ|ϑ , for τ, t,r ∈ [0,T ].

Note that, (P2) and the density of D(A ) in X imply that for every t ∈ [0,T ], −A(t) is the infinitesimal
generator of a uniformly bounded analytic semigroup Tt(ς), ς ≥ 0, satisfying

(11) ∥Tt(ς)∥B ≤C, for ς ≥ 0, and ∥A(t)Tt(ς)∥B ≤Cς−1, for ς > 0.

From (P2), it also yields that there exists an angle θ ∈ (0,π/2) such that

ρ(A(t))⊃ Σ = {λ ∈ C\{0} : θ ≤ |argλ | ≤ π}∪{0},

and (9) holds as

∥R(λ ;A(t))∥B ≤ C̃
|λ |+1

, for λ ∈ Σ, t ∈ [0,T ],

possibly with a different constant C̃ > 0.
Without losing generality, from the results of [31] the representation of semigroup in a Dunford

integral form is given by

Tt(ς) =
1

2πi

∫
C

e−ςzR(z;A(t))dz,

where C is a smooth path in Σ connecting +∞e−iθ to +∞eiθ for some θ ∈ (0,π/2).
For 0 ≤ t ≤ T , we introduce two operators

ϕt(ς) =
∫ ∞

0
ζα(υ)Tt(ςαυ)dυ , ς ≥ 0; ψt(ς) = ςα−1

∫ ∞

0
αυζα(υ)Tt(ςαυ)dυ , ς > 0.

The two operators we introduced here will indeed be instrumental in constructing fundamental solu-
tions. We will directly discuss some properties of ϕt(ς) and ψt(ς) that are frequently used throughout
this paper.

Lemma 12. Let (P1)-(P2) be satisfied, for each t ∈ [0,T ], operator families {ϕt(ς)}ς≥0, {ψt(ς)}ς>0
are linear and bounded, i.e.,

∥ϕt(ς)∥B ≤C, for ς ≥ 0, and ∥ψt(ς)∥B ≤Cgα(ς), for ς > 0.
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Proof. Since −A(t) is the infinitesimal generator of an analytic semigroup Tt(ς), ς ≥ 0, the operator
families {ϕt(ς)}t∈[0,T ],ς≥0, {ψt(ς)}t∈[0,T ],ς>0 are linear clearly. Moreover, for any x ∈ X , from (3) and
(11), we have

∥ϕt(ς)∥B ≤
∫ ∞

0
ζα(υ)∥Tt(ςαυ)∥Bdυ ≤C

∫ ∞

0
ζα(υ)dυ , ς ≥ 0.

From the same arguments, we get

∥ψt(ς)∥B ≤ςα−1
∫ ∞

0
αυζα(υ)∥Tt(ςαυ)∥Bdυ ≤Cςα−1

∫ ∞

0
αυζα(υ)dυ , ς > 0.

Thus, the desired results are satisfied. �

Lemma 13. Let (P1)-(P2) be satisfied, for each t ∈ [0,T ], there hold on B(X)

ϕt(ς) =
1

2πi

∫
C

Eα,1(−zςα)R(z;A(t))dz, ς ≥ 0,

ψt(ς) =ςα−1 1
2πi

∫
C

Eα,α(−zςα)R(z;A(t))dz, ς > 0.

Proof. From the Dunford integral of Tt(·), it follows that

ϕt(ς) =
∫ ∞

0
ζα(υ)Tt(ςαυ)dυ =

1
2πi

∫
C

∫ ∞

0
ζα(υ)e−zςα υR(z;A(t))dυdz.

It is clear from Lemma 12, by virtue of Lemma 6 (ii), the Fibini theorem shows that
1

2πi

∫
C

∫ ∞

0
ζα(υ)e−zςα υR(z;A(t))dυdz =

1
2πi

∫
C

Eα(−zςα)R(z;A(t))dz.

Therefore, the first identity is proved. On the other hand, for ς > 0, a similar way is employed to
check that

ψt(ς) =ςα−1 1
2πi

∫
C

∫ ∞

0
αυζα(υ)e−zςα υR(z;A(t))dυdz

=ςα−1 1
2πi

∫
C

Eα,α(−zςα)R(z;A(t))dz.

Hence, the another identity is obtained. The proof is completed. �

Remark 14. Let X = Lp[a,b], 1 ≤ p ≤ ∞, for some constant k > 1, let A(t) be a multiplication
operator defined by

A(t)x(s) =−|s− t|−kx(s).

From [17], the assumptions (P1)-(P3) hold, and therefore −A(t) is an infinitesimal generator of an-
alytic semigroup Tt(ς) = e−ςA(t) (ς ≥ 0, t ∈ [a,b]) of bounded linear operators on X. Hence, from
the properties of Wright-type function, operators ϕt(·), ψt(·) can be expressed as the corresponding
Mittag-Leffler functions by Lemma 6 (ii)-(iii), i.e.,

ϕt(ς) =
∫ ∞

0
ζα(υ)e−ςα υA(t)dυ =: Eα,1(−ςαA(t)),

ψt(ς) =ςα−1
∫ ∞

0
αυζα(υ)e−ςα υA(t)dυ =: ςα−1Eα,α(−ςαA(t)).
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Lemma 15. Let (P1)-(P2) be satisfied, for each t ∈ [0,T ], there hold on B(X)

ϕt(r− s) = sJ1−α
r ψt(r− s), r ∈ [s,T ];

d
dr

ϕt(r) =−A(t)ψt(r), r ∈ (0,T ].

Proof. Lemma 13 implies that sJ1−α
r ψt(r− s) is bounded on B(X), by Fubini’s theorem, it is equal

to

1
Γ(1−α)

1
2πi

∫
C

∫ r

s
(r− τ)−α(τ − s)α−1Eα,α(−z(τ − s)α)R(z;A(t))dτdz.

By virtue of identity in Lemma 4, one has

sJ1−α
r (r− s)α−1Eα,α(−z(r− s)α) =Eα,1(−z(r− s)α),

which implies

sJ1−α
r ψt(r− s) =

1
2πi

∫
C

Eα(−z(r− s)α)R(z;A(t))dz = ϕt(r− s).

On the other hand, by the differentiability of analytic semigroup, namely d
dr Tt(r) = −A(t)Tt(r) for

r > 0, we have

d
dr

ϕt(r) =
∫ ∞

0
ζα(υ)

d
dr

Tt(rαυ)dυ

=− rα−1
∫ ∞

0
αυζα(υ)A(t)Tt(rαυ)dυ =−A(t)ψt(r).

The proof is completed. �

Lemma 16. Let (P1)-(P3) be satisfied, the following statements are true

(i) for η ∈ (0,T ], ς , t1, t2 ∈ [0,T ], there holds

∥(A(t1)−A(t2))ψς (η)∥B ≤ C
η
|t1 − t2|ϑ ;

(ii) for η ∈ (0,T ], t,ς1,ς2 ∈ [0,T ], there holds

∥A(t)(ψς1(η)−ψς2(η))∥B ≤ C
η
|ς1 − ς2|ϑ ;

(iii) for 0 < η1 < η2 ≤ T , ς ∈ [0,T ], there holds

∥A(ς)(ψς (η2)−ψς (η1))∥B ≤ C
η1η2

|η2 −η1|;

(iv) for 0 < η1 < η2 ≤ T , there holds

∥ψς (η2)−ψς (η1)∥B ≤C|ηα−1
2 −ηα−1

1 |.

Moreover, A(t)ψς (η) ∈ B(X) for η ∈ (0,T ], t,ς ∈ [0,T ] and ∥A(t)ψς (η)∥B ≤Cη−1 for η ∈ (0,T ].
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Proof. From (3), (10) and (11), we have

∥(A(t1)−A(t2))ψς (η)∥B ≤∥(A(t1)−A(t2))A(ς)−1∥B∥A(ς)ψς (η)∥B

≤L|t1 − t2|ϑ ηα−1
∫ ∞

0
αυζα(υ)∥A(ς)Tς (ηαυ)∥Bdυ

≤C|t1 − t2|ϑ η−1,

which proves the first inequality.
Note that from (P2) it follows that ∥A(t)R(λ ;A(t))∥B ≤ C+ 1 for 0 ≤ t ≤ T. Since 0 ∈ ρ(A(ς))

for ς ∈ [0,T ], from (10) and the trigonometric inequality, it yields

∥A(t)A(ς)−1∥B ≤ ∥(A(t)−A(ς))A(ς)−1∥B +1 ≤ LT ϑ +1, for 0 ≤ t ≤ T,

therefore, we have

∥A(t)(R(λ ;A(ς1))−R(λ ;A(ς2)))∥B ≤ L̃|ς1 − ς2|ϑ ,(12)

where L̃ = (LT ϑ +1)(C+1)2L > 0. From Lemma 13 we get the following representation

ψς1(η)−ψς2(η) =ηα−1 1
2πi

∫
C

Eα,α(−zηα)(R(z;A(ς1))−R(z;A(ς2)))dz.

Noting that C is a smooth path in Σ running from +∞e−iθ to +∞eiθ for some θ ∈ (0,π/2), and the
following relation also holds

−zηα ∈ {z ∈ C : ω ≤ |argz| ≤ π}∪{0},

substituting ω ∈ (απ/2,π/2) in Lemma 2. From the analyticity of Mittag-Leffler function and the
resolvent in C , by the Cauchy integral theorem, Let δ = η−α > 0, we may shift the path of integration
C to C ′ = C1 ∪C2 ∪C3 by

C1 = {reiθ , r ≥ δ}, C2 = {δeiφ , θ ≤ |φ| ≤ π}, C3 = {re−iθ , r ≥ δ}.(13)

Firstly, in view of (12) we get∥∥∥∥ 1
2πi

∫
C1∪C3

Eα,α(−zηα)A(t)(R(z;A(ς1))−R(z;A(ς2)))dz
∥∥∥∥

B

≤C|ς1 − ς2|ϑ
∫

C1∪C3

|Eα,α(−zηα)||dz|.

This means from Remark 4 that∫
C1∪C3

|Eα,α(−zηα)||dz| ≤
∫

C1∪C3

C
1+ |zηα |2

|dz|.

Note that ∫
C1∪C3

1
1+ |zηα |2

|dz| ≤
∫ ∞

δ

1
1+ |reiθ ηα |2

dr+
∫ ∞

δ

1
1+ |re−iθ ηα |2

dr

=
∫ ∞

δ

2
1+ r2η2α dr.
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By a simple calculation, due to the integral
∫ ∞

0

1
1+ z2 dz = π/2, it yields∫

C1∪C3

|Eα,α(−zηα)| |dz| ≤Cη−α
∫ ∞

δηα

1
1+ r2 dr ≤Cη−α .

Secondly, we check the integral in C2. Since eRe(−δeiφ ηα )
1
α = ecos((π−φ)/α)δ

1
α η , by virtue of Lemma

2 and Lemma 3, we see that

(14) |Eα,α(−zηα)| ≤C(1+ |δηα |)
1−α

α ecos((π−φ)/α)δ
1
α η +

C
1+ |δηα |

≤C2
1−α

α e+
C
2
,

for z = δeiφ and θ ≤ |φ| ≤ π with δ = η−α > 0. Hence, it follows from (12) and (14) that∥∥∥∥ 1
2πi

∫
C2

Eα,α(−zηα)A(t)(R(z;A(ς1))−R(z;A(ς2)))dz
∥∥∥∥

B

≤L̃|ς1 − ς2|ϑ
∫

C2

|Eα,α(−zηα)| |dz|

≤C|ς1 − ς2|ϑ
(∫ π

θ
+
∫ −θ

−π

)
δdφ

≤C|ς1 − ς2|ϑ η−α .

We thus imply that∥∥∥∥ 1
2πi

∫
C

Eα,α(−zηα)A(t)(R(z;A(ς1))−R(z;A(ς2)))dz
∥∥∥∥

B

≤C|ς1 − ς2|ϑ η−α .

Consequently, we have

∥A(t)ψς1(η)−A(t)ψς2(η)∥B ≤C|ς1 − ς2|ϑ η−1.

Let us check (iii). By Lemma 13, for 0 < η1 ≤ η2 ≤ T , we have

ψς (η2)−ψς (η1) =
1

2πi

∫
C
(ηα−1

2 Eα,α(−zηα)−ηα−1
1 Eα,α(−zηα

1 ))R(z;A(ς))dz.

Using the identity d
dη (η

α−1Eα,α(−zηα)) = ηα−2Eα,α−1(−zηα), it yields

A(ς)ψς (η2)−A(ς)ψς (η1) =
1

2πi

∫
C

∫ η2

η1

ηα−2Eα,α−1(−zηα)A(ς)R(z;A(ς))dηdz.

Hence, in view of the analyticity of Mittag-Liffler function, we imply that∥∥∥∥∫
C

Eα,α−1(−zηα)A(ς)R(z;A(ς))dz
∥∥∥∥

B

≤C
∫

C ′
|Eα,α−1(−zηα)||dz|.

By the similar proof that of (ii), one can check that∫
C ′
|Eα,α−1(−zηα)||dz|=

∫
C1∪C2∪C3

|Eα,α−1(−zηα)||dz| ≤Cη−α ,
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which implies that ∥∥∥∥∫
C

Eα,α−1(−zηα)A(ς)R(z;A(ς))dz
∥∥∥∥

B

≤Cη−α .

Therefore, we have

∥A(ς)ψς (η2)−A(ς)ψς (η1)∥B ≤C
∫ η2

η1

η−2dη =
C

η1η2
|η2 −η1|.

Let us check (iv). From (iii), it follows that

ψς (η2)−ψς (η1) =
1

2πi

∫
C

∫ η2

η1

ηα−2Eα,α−1(−zηα)R(z;A(ς))dηdz.

Let η > 0 and δ = η−α > 0 be fixed, by the same way in (14), we get |Eα,α−1(−zηα)| ≤C, for z∈C2.
In view of the Cauchy integral theorem and the analyticity of Mittag-Liffler function, similarly to the
proof of (ii), by Lemma 2, we have∫

C ′
|Eα,α−1(−zηα)|/|z| |dz| ≤

∫ ∞

δ

2C
r(1+ rηα)

dr+C
(∫ π

θ
+
∫ −θ

−π

)
dφ.

Due to the integral
∫ ∞

1

1
z(1+ z)

dz = ln2, it yields∫
C ′
|Eα,α−1(−zηα)|/|z| |dz| ≤ 2C ln2+2C(π −θ).

This deduces that

∥ψς (η2)−ψς (η1)∥B ≤C
∫ η2

η1

ηα−2dη =C|ηα−1
2 −ηα−1

1 |.

Since Tς (η) is an analytic semigroup for η ≥ 0, it follows that A(t)Tς (η) also is a bounded linear
operator for t,ς ∈ [0,T ], η ∈ (0,T ]. From (11) and Lemma 6 (iv), A(t)ψς (η) ∈ B(X) is obvious for
η ∈ (0,T ], t,ς ∈ [0,T ]. The proof is completed. �

Lemma 17. Let (P1)-(P3) be satisfied, for each t ∈ [0,T ], there holds on B(X)

−
∫ t

ς
A(t)ψt(t − τ)dτ = ϕt(t − ς)− I.

Proof. For every ε > 0, since Tt(η) is an analytic semigroup on X , we see that Tt(0) = I. Hence, by
(3), we get that ϕt(0) = I. By Lemma 15, integrating on term d

dτ ϕt(τ) from 0 to t − ς we have∫ t−ς

0
∂τϕt(τ)dτ = ϕt(t − ς)−ϕt(0) = ϕt(t − ς)− I.

On the other hand, by Lemma 15 again we have∫ t−ς

0
∂τϕt(τ)dτ =−

∫ t−ς

0
A(t)ψt(τ)dτ,

which means that

−
∫ t−ς

0
A(t)ψt(τ)dτ = ϕt(t − ς)− I.
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We thus get the desired result. �

Lemma 18. Assume that

(P4): A function ξ (·,s) ∈ L1(s,T ;B(X))∩C((s,T ];B(X)) such that the integral

Hξ (t,s) :=
∫ t

s

∥ξ (t,s)−ξ (τ,s)∥B

t − τ
dτ,

exists on R+ for t ∈ [s+ ε,T ] with any ε > 0.

Then, there holds

L
sD

α
t

∫ t

s
ψτ(t − τ)ξ (τ,s)dτ = ξ (t,s)−

∫ t

s
A(τ)ψτ(t − τ)ξ (τ,s)dτ, t ∈ (s,T ].

Proof. Let

wξ (t,s) :=
∫ t

s
ψτ(t − τ)ξ (τ,s)dτ, t > s.

Then wξ is well-defined on (s,T ]. In fact, from the assumption of ξ and by Lemma 12, we have

∥wξ (t,s)∥B ≤
∫ t

s
∥ψτ(t − τ)(ξ (τ,s)−ξ (t,s))∥B dτ +

∫ t

s
∥ψτ(t − τ)ξ (t,s)∥B dτ

≤C
∫ t

s
gα(t − τ)∥ξ (τ,s)−ξ (t,s)∥B dτ +C

∫ t

s
gα(t − τ)∥ξ (t,s)∥B dτ

≤
(
CHξ (t,s)+C∥ξ (t,s)∥B

)
(t − s)α ,

which belongs to L1(s,T ;R+). Hence, the integral sJ1−α
t wξ exists in view of the definition of

Riemann-Liouville fractional integral for almost every t ∈ [s,T ], (see e.g. [7, Theorem 2.1]), and
sJ1−α

t wξ itself is also an element in L1(s,T ;R+). Then, from Fubini’s theorem, we have∫ t

s
g1−α(t − τ)wξ (τ,s)dτ =

∫ t

s

∫ τ

s
g1−α(t − τ)ψυ(τ −υ)ξ (υ ,s)dυdτ

=
∫ t

s

∫ t

υ
g1−α(t − τ)ψυ(τ −υ)ξ (υ ,s)dτdυ .

Lemma 15 implies

sJ1−α
t wξ (t,s) =

∫ t

s
ϕυ(t −υ)ξ (υ ,s)dυ ,

which means that

L
sD

α
t

∫ t

s
ψτ(t − τ)ξ (τ,s)dτ =

d
dt

∫ t

s
ϕυ(t −υ)ξ (υ ,s)dυ .

It suffices to show that

vξ (t) =
∫ t

s
ϕυ(t −υ)ξ (υ ,s)dυ , 0 ≤ s < t ≤ T,

is differentiable in t. Let h > 0, by a direct calculation we have

vξ (t +h)− vξ (t)
h

=
1
h

∫ t+h

t
ϕυ(t +h−υ)ξ (υ ,s)dυ +

1
h

∫ t

s
(ϕυ(t +h−υ)−ϕυ(t −υ))ξ (υ ,s)dυ .
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From ϕt(0) = I and ϕυ(t +h−υ)ξ (υ ,s) ∈ L1(s,T ;B(X)), from [6, Proposition 1.4.29] we have

1
h

∫ t+h

t
ϕυ(t +h−υ)ξ (υ ,s)dυ → ϕt(0)ξ (t,s) = ξ (t,s), as h → 0,

in L1(s,T ;B(X)). Note that by using Lemma 15 again,
1
h
(ϕυ(t +h−υ)−ϕυ(t −υ))→−A(υ)ψυ(t −υ), as h → 0.

Therefore, by virtue of Lebesgue dominated convergence theorem, it remains to check that the inte-
grand term A(·)ψ·(t −·)ξ (·,s) in L1(s, t;B(X)) for t ∈ (s,T ]. We first have

−
∫ t

s
A(υ)ψυ(t −υ)ξ (υ ,s)dυ =

∫ t

s
(A(t)ψt(t −υ)−A(υ)ψυ(t −υ))ξ (υ ,s)dυ

−
∫ t

s
A(t)ψt(t −υ)ξ (υ ,s)dυ .(15)

The Lemma 16 (i)-(ii) imply that

∥A(t)ψt(t −υ)−A(υ)ψυ(t −υ)∥B ≤C(t −υ)ϑ−1,

therefore the integral∫ t

s
(A(t)ψt(t −υ)−A(υ)ψυ(t −υ))ξ (υ ,s)dυ , exists on [s, t].

In addition, by virtue of Lemma 17 we have∫ t

s
A(t)ψt(t −υ)ξ (υ ,s)dυ =

∫ t

s
A(t)ψt(t −υ)(ξ (υ ,s)−ξ (t,s))dυ +

∫ t

s
A(t)ψt(t −υ)ξ (t,s)dυ

=
∫ t

s
A(t)ψt(t −υ)(ξ (υ ,s)−ξ (t,s))dυ +(I −ϕt(t − s))ξ (t,s).

By the inequality ∥A(υ)ψυ(t −υ)∥B ≤C(t −υ)−1, it follows from the assumption of ξ that∫ t

s
A(t)ψt(t −υ)(ξ (υ ,s)−ξ (t,s))dυ , exists on [s+ ε, t],

for any ε > 0. Moreover, (I − ϕt(t − s))ξ (t,s) ∈ L1(s,T ;B(X))∩C((s,T ];B(X)) due to ξ (t,s) ∈
L1(s,T ;B(X))∩C((s,T ];B(X)). As a consequence, we get

L
sD

α
t

∫ t

s
ψτ(t − τ)ξ (τ,s)dτ =

d
dt

vξ (t) = ξ (t,s)−
∫ t

s
A(υ)ψυ(t −υ)ξ (υ ,s)dυ .

The proof is completed. �

Remark 19. It is notice that Lemma 18 also holds for ξ ∈ L1(s,T ;X)∩C((s,T ];X), specially if ξ is
Hölder continuous function with type (γ,K), i.e., there exists constants γ ∈ (0,1) and K > 0 such that

∥ξ (t,ς)−ξ (τ,ς)∥ ≤ K|t − τ|γ , t,τ ∈ [s,T ],

then, (P4) is satisfied immediately. If x ∈ D(A ), the conclusion in Lemma 18 just needs ξ (·,s)x ∈
L1(s,T ;X)∩C((s,T ];X) without condition (P4). Additionally, suppose that A(·) is a linear bounded
operator on B(X) associated with ξ (·,s)∈L1(s,T ;B(X))∩C((s,T ];B(X)), the conclusion of Lemma
18 holds without the condition (P4).
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NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 16

Remark 20. The Hölder continuity of ξ is a quite useful assumption for studying the solvability of
problem (1). It also satisfies assumption (P4). However, we have identified several special cases
where the Hölder continuity does not hold assumption (P4) is still met. Specifically, operators such
as R1(t,s) and R(t,s), which are defined further below, can be employed to obtain the fundamental
solutions of the problem (1) even without Hölder continuity.

In the sequel, we start with a formal computation that will lead us to construct the fundamental
solution. For 0 ≤ s < t ≤ T , assume that operator R(t,s) satisfies (P4), set

(16) Uα(t,s) = ψs(t − s)+W (t,s),

where

W (t,s) =
∫ t

s
ψτ(t − τ)R(τ,s)dτ.

From Lemma 13 and Lemma 15, we first have

L
sD

α
t ψs(t − s) =

d
dtsJ1−α

t ψs(t − s) =
d
dt

∫ ∞

0
ζα(υ)Ts((t − s)αυ)dυ =−A(s)ψs(t − s).

On the other hand, in view of Lemma 18, we have

L
sD

α
t W (t,s) =L

sD
α
t

∫ t

s
ψτ(t − τ)R(τ,s)dτ = R(t,s)−

∫ t

s
A(τ)ψτ(t − τ)R(τ,s)dτ.

From the following identity A(t)Uα(t,s) = A(t)ψs(t − s)+A(t)W (t,s), one finds that

L
sD

α
t Uα(t,s)+A(t)Uα(t,s) =−A(s)ψs(t − s)+R(t,s)−

∫ t

s
A(τ)ψτ(t − τ)R(τ,s)dτ

+A(t)ψs(t − s)+A(t)W (t,s).

Let R1(t,s) =−(A(t)−A(s))ψs(t − s). We thus obtain

L
sD

α
t Uα(t,s)+A(t)Uα(t,s) =−R1(t,s)+R(t,s)−

∫ t

s
R1(t,τ)R(τ,s)dτ.

According to above arguments, if Uα(t,s) is a solution of
L
sD

α
t Uα(t,s)+A(t)Uα(t,s) = 0,

then the integral equation

R1(t,s)+
∫ t

s
R1(t,τ)R(τ,s)dτ = R(t,s)(17)

must be satisfied.

Remark 21. We obverse that the identity (17) formally corresponds to that in [31, pp150.(6.6)], where
the author considered the first order non-autonomous evolution equation. However, since the operator
ψs(t − s) in the fractional setting differs from e−(t−s)A(t) in the first order evolution operator, there are
significant differences in their properties. Inspired by the technique of [31], we construct a solution for
R(t,s) as defined in (17). At the same time, it also proposes a reasonable explanation for constructing
a fundamental solution Uα(t,s).

For this purpose, we next establish some useful properties.
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Lemma 22. Let (P1)-(P3) be satisfied, then the operator R1(t,s) =−(A(t)−A(s))ψs(t − s) is linear
bounded on 0 ≤ s < t ≤ T in the following sense,

∥R1(t,s)∥B ≤C(t − s)ϑ−1, for 0 ≤ s < t ≤ T.

Moreover, operator R1(t,s) is continuous in the uniform operator topology on 0 ≤ s ≤ t − ε ≤ T for
every ε > 0, i.e., for every 0 < β < ϑ < 1, there holds

∥R1(t,s)−R1(σ ,s)∥B ≤C(t −σ)β (σ − s)ϑ−β−1,

for all 0 ≤ s < σ ≤ t ≤ T .

Proof. The linearity is obvious. From (3) and (11), it follows that

∥A(s)ψs(t − s)∥B ≤(t − s)α−1
∫ ∞

0
αυζα(υ)∥A(s)Ts((t − s)αυ)∥Bdυ ≤C(t − s)−1,

and therefore from (11) and

∥(A(t)−A(s))A(s)−1∥B∥A(s)ψs(t − s)∥B ≤C(t − s)ϑ−1,

we obtain the desired inequality

∥R1(t,s)∥B ≤ ∥(A(t)−A(s))ψs(t − s)∥B ≤C(t − s)ϑ−1, for 0 ≤ s < t ≤ T.

Clearly, the R1(t,s)−R1(σ ,s) is equal to

−(A(t)−A(σ))ψs(t − s)− (A(σ)−A(s))(ψs(t − s)−ψs(σ − s)).

From (i) in Lemma 16 one has

∥(A(t)−A(σ))ψs(t − s)∥B ≤C(t −σ)ϑ (σ − s)−1.

By using (P3) and (iii) in Lemma 16, we obverse that

∥(A(σ)−A(s))(ψs(t − s)−ψs(σ − s))∥B ≤C(σ − s)ϑ−2(t −σ).

Additionally, by using (11), we also get that

∥(A(σ)−A(s))(ψs(t − s)−ψs(σ − s))∥B ≤2LC(σ − s)ϑ−1.

Therefore, in view of the interpolation of ϑ ∈ (0,1], we have

∥(A(σ)−A(s))(ψs(t − s)−ψs(σ − s))∥B ≤
(

C(σ − s)ϑ−2(t −σ)
)ϑ (

2LC(σ − s)ϑ−1
)1−ϑ

≤C(σ − s)−1(t −σ)ϑ ,

which implies that ∥R1(t,s)−R1(σ ,s)∥B ≤C(t −σ)ϑ (σ − s)−1.
On the other hand, we have

∥R1(t,s)−R1(σ ,s)∥B ≤∥R1(t,s)∥B +∥R1(σ ,s)∥B

≤C
(
(t − s)ϑ−1 +(σ − s)ϑ−1

)
≤ 2C(σ − s)ϑ−1,
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NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 18

for t > σ . Interpolating the two estimates for ∥R1(t,s)−R1(σ ,s)∥B we find

∥R1(t,s)−R1(σ ,s)∥B ≤C
(
(t −σ)ϑ (σ − s)−1

)β/ϑ (
(σ − s)ϑ−1

)1−β/ϑ

≤C(t −σ)β (σ − s)θ−β−1.

The proof is completed. �
We begin with solving the integral equation (17) for R(t,s). We know that R1(t,s) satisfies Lemma

22, then (17) can be solved by successive approximation as follows:
For m ≥ 1 and 0 ≤ s < t ≤ T , we define inductively

(18) Rm+1(t,s) =
∫ t

s
R1(t,τ)Rm(τ,s)dτ,

and let

R(t,s) =
∞

∑
m=1

Rm(t,s).(19)

Lemma 23. Let (P1)-(P3) be satisfied, then operator R(t,s) satisfies

∥R(t,s)∥B ≤C(t − s)ϑ−1, t ∈ (s,T ].

It also is continuous in the uniform operator topology on B(X) for all 0 ≤ s < σ < t ≤ T , i.e., for
every 0 < β < ϑ ≤ 1, there holds

∥R(t,s)−R(σ ,s)∥B ≤C(t −σ)β (σ − s)ϑ−β−1.

Moreover, R(t,s) is a unique solution of the integral equation (17).

Proof. By induction, we know that Rm(t,s) is continuous in the uniform operator topology for 0 ≤
s < t ≤ T and

∥Rm(t,s)∥B ≤ (CΓ(ϑ))m

Γ(mϑ)
(t − s)mϑ−1.(20)

We note that the integral defining Rm+1(t,s) is an improper integral whose existence is an immediate
consequence of (20). The continuity of Rm+1(t,s) also follows easily from the continuity of Rm(t,s),
R1(t,s) and (20).

The estimate (20) implies that the series (19) converges in the uniform operator topology for 0 ≤
s ≤ t −ε ≤ T and every ε > 0. Moreover, using the definition of Mittag-Leffler functions and Lemma
3, we first have Eϑ ,ϑ (CΓ(ϑ)(t − s)ϑ )≤C for t ∈ [s,T ] and then

∥R(t,s)∥B ≤
∞

∑
m=1

∥Rm(t,s)∥B ≤
∞

∑
m=1

(CΓ(ϑ))m

Γ(mϑ)
(t − s)mϑ−1 =CΓ(ϑ)Eϑ ,ϑ (CΓ(ϑ)(t − s)ϑ )

≤C(t − s)ϑ−1.

As a consequence, from (18), for 0 ≤ s < t ≤ T it follows that

R(t,s) =
∞

∑
m=1

Rm(t,s) = R1(t,s)+
∞

∑
m=1

∫ t

s
R1(t,τ)Rm(τ,s)dτ.(21)
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NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 19

The continuity of Rm(t,s), m ≥ 1, Lemma 22 and (20) imply that one can interchange the summation
and integral in (21), and then R(t,s) is a solution of the integral equation (17).

Now, let R(t,s) be a solution of (17), the R(t,s)−R(σ ,s) is equal to

R1(t,s)−R1(σ ,s)+
∫ t

σ
R1(t,τ)R(τ,s)dτ +

∫ σ

s
(R1(t,τ)−R1(σ ,τ))R(τ,s)dτ.

By virtue of Lemma 22, for 0 < β < ϑ ≤ 1, we get∥∥∥∥∫ t

σ
R1(t,τ)R(τ,s)dτ

∥∥∥∥
B

≤C
∫ t

σ
(t − τ)ϑ−1(τ − s)ϑ−1dτ

≤C(σ − s)ϑ−β−1(t −σ)β
∫ t

σ
(t − τ)ϑ−β−1(τ − s)β dτ

≤C(σ − s)ϑ−β−1(t −σ)β ,

for 0 ≤ s < σ < t ≤ T . (2) and Lemma 22 also imply that∥∥∥∥∫ σ

s
(R1(t,τ)−R1(σ ,τ))R(τ,s)dτ

∥∥∥∥
B

≤C
∫ σ

s
(t −σ)β (σ − τ)ϑ−β−1(τ − s)ϑ−1dτ

≤C(t −σ)β (σ − s)ϑ−β−1.

Together with these estimates, we get the desired inequality

∥R(t,s)−R(σ ,s)∥B ≤∥R1(t,s)−R1(σ ,s)∥B +

∥∥∥∥∫ t

σ
R1(t,τ)R(τ,s)dτ

∥∥∥∥
B

+

∥∥∥∥∫ σ

s
(R1(t,τ)−R1(σ ,τ))R(τ,s)dτ

∥∥∥∥
B

≤C(t −σ)β (σ − s)ϑ−β−1.

Let us finally verify the uniqueness of solution. Let R̃(t,s) ∈ B(X) for t > s be any other solution
satisfying (17) that may have a weak singularity at t = s. Thus, we easily verify that R̄(t,s) = R(t,s)−
R̃(t,s) satisfies

∥R̄(t,s)∥B ≤
∫ t

s
∥R1(t,τ)∥B∥R̄(τ,s)∥Bdτ ≤C

∫ t

s
(t − τ)ϑ−1∥R̄(τ,s)∥Bdτ,

in which ∥R̄(t,s)∥B equals to zero by a generalization Gronwall inequality [38, Theorem 1.28]. Con-
sequently, R̄(t,s) is identically zero, i.e., R(t,s)≡ R̃(t,s). The proof is completed. �

Lemma 24. Let (P1)-(P3) be satisfied, then operator Uα(t,s) is linear bounded on B(X) for t ∈ (s,T ],
i.e.,

∥Uα(t,s)∥B ≤C(t − s)α−1, t ∈ (s,T ].

Moreover, it is continuous in the uniform operator topology on B(X) satisfying

∥Uα(t,s)−Uα(σ ,s)∥B ≤C(t −σ)α0(σ − s)ϑ0−1,

where α0 = min{1−α,α}, for all ϑ0 = min{2α −1,ϑ}, 0 ≤ s < σ < t ≤ T .
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Proof. Clearly, Uα(t,s) is a linear operator. Also, Lemma 22 and Lemma 23 show that Uα(t,s) is
well-defined. From Lemma 12 and Lemma 23 it follows that for t ∈ (s,T ]

∥Uα(t,s)∥B ≤∥ψs(t − s)∥B +
∫ t

s
∥ψτ(t − τ)∥B∥R(τ,s)∥Bdτ

≤C(t − s)α−1 +C
∫ t

s
(t − τ)α−1(τ − s)ϑ−1dτ

≤
(

C+C(T − s)ϑ
)
(t − s)α−1

≤C(t − s)α−1.

We next check that ψs(t − s) is uniformly continuous for t ∈ (s,T ]. In fact, let 0 ≤ s < σ < t ≤ T ,
from Lemma 16 (iv) and Lemma 23, we get that

∥Uα(t,s)−Uα(σ ,s)∥B ≤∥ψs(t − s)−ψs(σ − s)∥B +
∫ t

σ
∥ψτ(t − τ)R(τ,s)∥Bdτ

+
∫ σ

s
∥(ψτ(σ − τ)−ψτ(t − τ))R(τ,s)∥Bdτ

≤C|(t − s)α−1 − (σ − s)α−1|+C
∫ t

σ
(t − τ)α−1(τ − s)ϑ−1dτ

+C
∫ σ

s
|(t − τ)α−1 − (σ − τ)α−1|(τ − s)ϑ−1dτ.

Noting that (t − τ)α−1 < (σ − τ)α−1, we have∫ σ

s
|(t − τ)α−1 − (σ − τ)α−1|(τ − s)ϑ−1dτ

=
∫ σ

s
(σ − τ)α−1(τ − s)ϑ−1dτ −

∫ t

s
(t − τ)α−1(τ − s)ϑ−1dτ +

∫ t

σ
(t − τ)α−1(τ − s)ϑ−1dτ

=B(α,ϑ)((σ − s)α+ϑ−1 − (t − s)α+ϑ−1)+
∫ t

σ
(t − τ)α−1(τ − s)ϑ−1dτ,

where B(·, ·) is the Beta function. Hence, from the inequality

ξ a
1 −ξ a

2 ≤ (ξ1 −ξ2)
a, 0 ≤ ξ2 ≤ ξ1 < ∞, 0 ≤ a ≤ 1,

for (t − s)α−1 < (σ − s)α−1, we have

∥Uα(t,s)−Uα(σ ,s)∥B ≤C((σ − s)α−1 − (t − s)α−1)+2C(t −σ)α(σ − s)ϑ−1

+C((σ − s)α+ϑ−1 − (t − s)α+ϑ−1)

≤C(t −σ)1−α(σ − s)2α−2 +C(t −σ)α(σ − s)ϑ−1,

we thus get the desired conclusion. The proof is completed. �

Remark 25. The operator Uα(t,s) ̸= Uα(t,r)Uα(r,s), the reason is that the Mittag-Leffler function
Eα,α(z) does not enjoy the semigroup property by Lemma 13, that is Eα,α(t+ s) ̸= Eα,α(t)Eα,α(s) for
t,s ∈ R+, α ∈ (0,1), and thus ψs(t − s) = ψr(t − r)ψs(r− s) is invalid, this means that Uα(t,s) has
not “good” properties to compared with that of the classical evolution operator.
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Remark 26. It is worth noticing that if A(t) degenerates to A : D(A) ⊂ X → X (independent of t),
the infinitesimal generator of an analytic semigroup {T (t)}t≥0, then Uα(t,s) degenerates to Tα(t − s),
which is a resolvent operator (see e.g. [41]) given by

Tα(t) = tα−1
∫ ∞

0
αυMα(υ)T (tαυ)dυ , t > 0.

Additionally, we also see that Tα(t)= tα−1Eα,α(−Atα) (see e.g. [5]), where Tα(t+s) ̸= Tα(t)Tα(s) for
α ∈ (0,1) and it does not possess the semigroup property, this situation is compatible for ψs(t − s) ̸=
ψr(t − r)ψs(r− s).

Lemma 27. Let (P1)-(P3) hold and let

ηg(t,s) :=
∫ t

s
Uα(t,τ)g(τ,s)dτ, 0 ≤ s < t ≤ T,

where g(·,s) satisfies the assumption (P4) with values in X, then ηg ∈ D(A ) for t ∈ (s,T ] and it is a
solution to

L
sD

α
t ηg(t,s)+A(t)ηg(t,s) = g(t,s).

Proof. From the assumption of function g, by virtue of Lemma 23, it yields

L
sD

α
t

∫ t

s
ψτ(t − τ)g(τ,s)dτ =g(t,s)−

∫ t

s
A(τ)ψτ(t − τ)g(τ,s)dτ.

Let G(t,s) =
∫ t

s
R(t,τ)g(τ,s)dτ, by Lemma 23, it is easy to check that function G(t,s) satisfies the

assumption (P4) in Lemma 18. Hence, by Fubini’s theorem we get

L
sD

α
t

∫ t

s
W (t,τ)g(τ,s)dτ = L

sD
α
t

∫ t

s

∫ t

τ
ψυ(t −υ)R(υ ,τ)g(τ,s)dυdτ

= L
sD

α
t

∫ t

s
ψτ(t − τ)G(τ,s)dτ

=G(t,s)−
∫ t

s
A(τ)ψτ(t − τ)G(τ,s)dτ,

it means that

(22) L
s Dα

t ηg(t,s) =g(t,s)−
∫ t

s
A(τ)ψτ(t − τ)g(τ,s)dτ +G(t,s)−

∫ t

s
A(τ)ψτ(t − τ)G(τ,s)dτ.
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NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 22

Therefore, it suffices to verify that ηg(t,s) ∈ D(A ) on [s+ ε,T ] with any ε > 0. In fact, by Lemma
16 and Lemma 17 it follows that∥∥∥∥∫ t

s
A(t)ψτ(t − τ)g(τ,s)dτ

∥∥∥∥
≤
∥∥∥∥∫ t

s
A(t)ψt(t − τ)g(t,s)dτ

∥∥∥∥+∥∥∥∥∫ t

s
A(t)ψτ(t − τ)(g(τ,s)−g(t,s))dτ

∥∥∥∥
+

∥∥∥∥∫ t

s
A(t)(ψτ(t − τ)−ψt(t − τ))g(t,s)dτ

∥∥∥∥
≤(C+1)∥g(t,s)∥+C

∫ t

s

∥g(τ,s)−g(t,s)∥
t − τ

dτ +C
∫ t

s
(t − τ)ϑ−1∥g(t,s)∥dτ

≤CHg(t,s)+C∥g(t,s)∥,

which means that
∫ t

s
ψτ(t − τ)g(τ,s)dτ ∈ D(A ) on [s+ ε,T ]. Similarly, we derive that∫ t

s
W (t,τ)g(τ,s)dτ ∈ D(A ).

Hence, ηg ∈ D(A ). It yields

(23)
A(t)ηg(t,s) =A(t)

∫ t

s
ψτ(t − τ)g(τ,s)dτ +A(t)

∫ t

s
W (t,τ)g(τ,s)dτ

=A(t)
∫ t

s
ψτ(t − τ)g(τ,s)dτ +A(t)

∫ t

s
ψτ(t − τ)G(τ,s)dτ.

Consequently, combined (22) and (23), we have

L
s Dα

t ηg(t,s)+A(t)ηg(t,s) =g(t,s)−
∫ t

s
A(τ)ψτ(t − τ)g(τ,s)dτ

+G(t,s)−
∫ t

s
A(τ)ψτ(t − τ)G(τ,s)dτ

+A(t)
∫ t

s
ψτ(t − τ)g(τ,s)dτ +A(t)

∫ t

s
ψτ(t − τ)G(τ,s)dτ

=g(t,s)−
∫ t

s
R1(t,τ)g(τ,s)dτ +G(t,s)−

∫ t

s
R1(t,τ)G(τ,s)dτ.

Additionally, it yields∫ t

s
R1(t,τ)G(τ,s)dτ =

∫ t

s

∫ τ

s
R1(t,τ)R(τ,ν)g(ν ,s)dνdτ =

∫ t

s

∫ t

ν
R1(t,τ)R(τ,ν)g(ν ,s)dτdν .

Identity (17) shows that∫ t

s
R1(t,τ)g(τ,s)dτ +G(t,s)−

∫ t

s
R1(t,τ)G(τ,s)dτ = 0.

Consequently, g is a solution to the desired equation. The proof is completed.
�

Lemma 28. Let R(t,s) be given in (19). There holds L
s Dα

t wR(·,s)x ∈C((s,T ],X) for any x ∈ X.
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NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 23

Proof. By Lemma 18, Remark 19, ∥A(t)ψt(η)∥B ≤Cη−1 for η > 0, t ∈ [0,T ] and the continuity of

R, it just needs to prove
∫ t

s
A(τ)ψτ(t − τ)R(τ,s)xdτ ∈C([s+ ε,T ],X) with any ε > 0 and any x ∈ X .

Let {tn}∞
n≥1 such that s+ ε ≤ t < tn ≤ T and tn → t as n → ∞, we need to verify that∫ tn

s
A(τ)ψτ(tn − τ)R(τ,s)xdτ −

∫ t

s
A(τ)ψτ(t − τ)R(τ,s)xdτ → 0, as tn → t.

By Lemma 18, we know that∥∥∥∥∫ tn

t
A(τ)ψτ(tn − τ)R(τ,s)xdτ

∥∥∥∥≤C(tn − t)ϑ +

∥∥∥∥∫ tn

t
A(tn)ψtn(tn −υ)(R(υ ,s)−R(tn,s))xdυ

∥∥∥∥
+∥(I −ϕtn(tn − t))R(tn,s)x∥

≤C(tn − t)ϑ∥x∥+C
∫ tn

t
(tn −υ)β−1(υ − s)ϑ−β−1dυ∥x∥

+C∥(I −ϕtn(tn − t))x∥(tn − s)ϑ−1

≤C(tn − t)ϑ∥x∥+C(t − s)ϑ−β−1(tn − t)β∥x∥

+C∥(I −ϕtn(tn − t))x∥(tn − s)ϑ−1 → 0, as n → ∞,

where we have used Lemma 23 and ϕt(0) = I. Moveover, we note that

∥A(τ)(ψτ(tn − τ)−ψτ(t − τ))(R(τ,s)−R(t,s))x∥ ≤C(t − τ)β−1(τ − s)ϑ−β−1∥x∥,

is L1 integrable in a.e. [s, t], and then from the continuity of A(τ)ψτ(t −τ) for t ∈ (τ,T ], we also have
A(τ)ψτ(tn − τ)(R(τ,s)−R(t,s))x → A(τ)ψτ(t − τ)(R(τ,s)−R(t,s))x as n → ∞ for a.e. τ ∈ [s, t]. By
Lebesgue dominated convergence theorem, we get∫ t

s
A(τ)(ψτ(tn − τ)−ψτ(t − τ))(R(τ,s)−R(t,s))xdτ → 0, as n → ∞.(24)

On the other hand, we have∫ t

s
A(τ)(ψτ(tn − τ)−ψτ(t − τ))R(t,s)xdτ =

∫ t

s
(A(tn)ψtn(tn − τ)−A(t)ψt(t − τ))R(t,s)xdτ

+
∫ t

s
(K(tn,τ)−K(t,τ))R(t,s)xdτ =: J1 + J2,

where K(t,τ) = A(τ)ψτ(t − τ)−A(t)ψt(t − τ). From Lemma 17, we first have

J1 =
∫ tn

t
A(tn)ψtn(tn − τ)R(t,s)xdτdτ +

∫ tn

0
A(tn)ψtn(tn − τ)R(t,s)xdτ

−
∫ t

0
A(t)ψt(t − τ)R(t,s)xdτ

=(ϕt(t − s)−ϕtn(tn − t)−ϕtn(tn − s)− I)R(t,s)x,

which tends to zero as n → ∞. In view of K(tn,τ)x → K(t,τ)x as n → ∞ for a.e. [s, t] and from Lemma
18 we get

∥K(tn,τ)x−K(t,τ)x∥ ≤C((tn − τ)ϑ−1 +(t − τ)ϑ−1)∥x∥ ≤C(t − τ)ϑ−1,
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NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 24

is L1 integrable for a.e. [s, t]. Therefore, by Lebesgue dominated convergence theorem, for any x ∈ X
we get ∫ t

s
(K(tn,τ)−K(t,τ))xdτ → 0, as n → ∞,

which means J2 → 0 as n → ∞, and then∫ t

s
A(τ)(ψτ(tn − τ)−ψτ(t − τ))R(t,s)xdτ → 0, as n → ∞.(25)

Together (24) and (25), we obtain the desired result. The proof is completed. �

In particular, we get the following conclusion.

Corollary 29. Let (P1)-(P3) hold. If ξ is Hölder continuous with type (γ,K). There holdsL
s Dα

t wξ (·,s)x∈
C((s,T ],X) for any x ∈ X.

In the sequel, we introduce a concept of fundamental solution.

Definition 30. An operator-valued function Uα(t,s) ∈ C((s,T ],B(X)) is called a fundamental solu-
tion of equation

(26) L
sD

α
t x(t)+A(t)x(t) = 0, 0 ≤ s < t ≤ T,

if

(i) the derivative L
sD

α
t Uα(t,s) exists in B(X), and is also strongly continuous on (s,T ].

(ii) the range of Uα(t,s) is included in D(A ) for 0 ≤ s < t ≤ T .
(iii) for any y ∈ D(A ), there hold

(27) L
sD

α
t Uα(t,s)y+A(t)Uα(t,s)y = 0, 0 ≤ s < t ≤ T,

(28) sJ1−α
t Uα(t,s)y → y, as t → s.

Theorem 31. Let (P1)-(P3) be satisfied, then there exists a fundamental solution Uα(t,s) of equation
(26). Moreover, for any xs ∈ D(A ), the problem

(29) L
sD

α
t x(t)+A(t)x(t) = 0, sJ1−α

t x(s) = xs,

has a unique classical solution x(t) =Uα(t,s)xs, t ∈ (s,T ].

Proof. By virtue of Lemma 23, we know that R(t,s) : (s,T ] 7→ B(X) satisfies the assumption of (P4).
Hence, we have

L
sD

α
t

∫ t

s
ψτ(t − τ)R(τ,s)dτ =R(t,s)−

∫ t

s
A(τ)ψτ(t − τ)R(τ,s)dτ.

In particular, for t ∈ (s,T ], we have∥∥∥∥L
sD

α
t

∫ t

s
ψτ(t − τ)R(τ,s)dτ

∥∥∥∥
B

≤C(t − s)ϑ−1.
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NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 25

In fact, from Lemma 23, it suffices to verify the estimate of integrand term.∫ t

s
A(τ)ψτ(t − τ)R(τ,s)dτ

=
∫ t

s
(A(τ)−A(t))ψτ(t − τ)R(τ,s)dτ +

∫ t

s
A(t)(ψτ(t − τ)−ψt(t − τ))R(τ,s)dτ

+
∫ t

s
A(t)ψt(t − τ)(R(τ,s)−R(t,s))dτ +

∫ t

s
A(t)ψt(t − τ)R(t,s)dτ

=:I1 + I2 + I3 + I4.

By virtue of (i), (ii) in Lemma 16 and Lemma 23, we have

∥Ii∥B ≤C
∫ t

s
(t − τ)ϑ−1(τ − s)ϑ−1dτ ≤C(t − s)2ϑ−1,

for i = 1,2. Lemma 23 implies that for every 0 < β < ϑ ≤ 1 we have

∥I3∥B ≤C
∫ t

s
(t − τ)β−1(τ − s)ϑ−β−1dτ ≤C(t − s)ϑ−1.

Lemma 17 shows that ∥I4∥B ≤C(t−s)ϑ−1. Hence,L
sD

α
t Uα(t,s) exists in B(X) for t ∈ (s,T ] as follows

L
sD

α
t Uα(t,s) =−A(s)ψs(t − s)+R(t,s)−

∫ t

s
A(τ)ψτ(t − τ)R(τ,s)dτ.

By virtue of (iii) in Lemma 16, Lemma 23 and Lemma 28, we deduce that L
sD

α
t Uα(t,s) is strongly

continuous on [s+ ε,T ] with any ε > 0. Thus, the requirement (i) in the sense of Definition 30 is
satisfied.

For any y ∈ D(A ), it follows that A(t)Uα(t,s)y = Uα(t,s)A(t)y commuted with the property
A(t)Tt(ς)y = Tt(ς)A(t)y. Since

A(t)Uα(t,s)y = A(t)ψs(t − s)y+A(t)
∫ t

s
ψτ(t − τ)R(τ,s)ydτ,

by repeating the above proof process, we get the requirement (ii) that the range of Uα(t,s) is included
in D(A ) for t ∈ (s,T ].

From the construction of a fundamental solution at the beginning of the this subsection, it is readily
seen that (27) holds. Next, for any y ∈D(A ), it suffices to prove sJ1−α

t Uα(t,s)y → y as t → s. In fact,
Lemma 13 and Lemma 15 show that

sJ1−α
t Uα(t,s)y = sJ1−α

t ψs(t − s)y+sJ1−α
t W (t,s)y

=ϕs(t − s)y+
1

Γ(1−α)

∫ t

s

∫ t

σ
(t − τ)−αψσ (τ −σ)R(σ ,s)ydτdσ

=ϕs(t − s)y+
∫ t

s
ϕσ (t −σ)R(σ ,s)ydτ.

Furthermore, from Lemma 12 and Lemma 23, it follows that∥∥∥∥∫ t

s
ϕσ (t −σ)R(σ ,s)ydτ

∥∥∥∥≤C
∫ t

s
∥R(σ ,s)y∥dτ ≤C(t − s)ϑ∥y∥.
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This shows that

sJ1−α
t Uα(t,s)y → y, as t → s.

Thus, there exists a fundamental solution in the sense of Definition 30.
Clearly, the solution x(t) = Uα(t,s)xs is a classical solution in the sense of Definition 10 due to

Uα(t,s) is a fundamental solution and is uniformly continuous in Lemma 24. So it remains to prove
the uniqueness of classical solution. Clearly, the above proofs imply that A(t)Uα(t,s) ∈ B(X) for
every t ∈ (s,T ]. This means that x ∈ D(A ). We now introduce, for every λ > 0, the Yosida ap-
proximation of A(t) by Aλ (t) = λA(t)(λ I +A(t))−1. Obviously, limλ→∞ Aλ (t)x(t) = A(t)x(t) for
x ∈ D(A ) by the density of D(A ) in X , it also has ∥R(z,Aλ (t))∥B ≤C′/(1+ |z|), z ∈ Σ, and

∥(Aλ (t)−Aλ (s))(Aλ (r))
−1∥ ≤ L′|t − s|ϑ ,

where C′,L′ > 0 are determined by C and L which are defined as in (9) and (10), respectively. There-
fore, one finds that the map t 7→ Aλ (t) is continuous in the uniform operator topology in view of (P3)
and ∥Aλ (t)∥ ≤C′λ from Σ ⊂ ρ(A(t)). Now, let us consider the approximation problem

(30) L
sD

α
t xλ (t)+Aλ (t)xλ (t) = 0, sJ1−α

t xλ (s) = xs.

It is readily seen that (30) has a solution xλ which is given by xλ (t) =Uλ ,α(t,s)xs, where

Uλ ,α(t,s) = ψλ ,s(t − s)+Wλ (t,s),

is a fundamental solution of the first equation in problem (30) and Tλ ,s(t) =
1

2πi

∫
Γ

e−tzR(z;Aλ (s))dz,

ψλ ,s(t) = tα−1
∫ ∞

0
αυζα(υ)Tλ ,s(t

αυ)dυ , Wλ (t,s) =
∫ t

s
ψλ ,τ(t − τ)R(τ,s)dτ.

By repeating the proofs process as in corresponding lemmas, the operators ψλ ,s(t), Wλ (t,s) and
Uλ ,α(t,s) enjoy the properties that of ψs(t), W (t,s) and Uα(t,s), respectively.

Now, let wλ (t) = x(t)− xλ (t), then it satisfies

(31) L
sD

α
t wλ (t)+Aλ (t)wλ (t) = ξλ (t), sJ1−α

t wλ (s) = 0.

where ξλ (t) = (Aλ (t)−A(t))x(t) and ξλ ∈ X . Condition (P3) shows that ξλ (t) is continuous on (s,T ]
and it is an L1-integral function, indeed, for xs ∈ D(A ), from Lemma 24 we have

∥ξλ (t)∥=∥A(t)(λR(λ ,A(t))− I)Uα(t,s)xs∥ ≤C(t − s)α−1∥xs∥D(A ),

which belongs to L1(s,T ;R+).
Furthermore, if ξλ (t) = 0 for every λ > 0, then by using (5) and the similar proof of Theorem 11,

it follows that Cauchy problem (31) has a unique solution as follows

(32) wλ (t) =
1

Γ(α)

∫ t

s
(t − τ)α−1Aλ (τ)wλ (τ)dτ.

The generalized Gronwall inequality (see e.g. [41]) shows wλ (t) = 0. Consequently, we have x(t) =
xλ (t) for all λ > 0 and the uniqueness follows.
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If ξλ (t) ̸= 0 for every λ > 0, from the boundedness of ξλ (t) and Aλ (t), by using the similar proof
of Theorem 11, we know that wλ is the unique solution of Cauchy problem (31) satisfying

(33) wλ (t) =
∫ t

s
Uλ ,α(t,τ)ξλ (τ)dτ.

Admitting (33) satisfies problem (31) for the moment. Now, let Rλ ,1(t,s) = (Aλ (t)−Aλ (s))ψλ ,s(t −
s), and Rλ (t,s) is the unique solution of variation of parameters formula

Rλ ,1(t,s)+
∫ t

s
Rλ ,1(t,τ)Rλ (τ,s)dτ = Rλ (t,s),

where we can apply the same way as in constructing R(t,s) to build Rλ (t,s) and it enjoys the similar
properties of R(t,s) as follows

Rλ ,m+1(t,s) =
∫ t

s
R1(t,τ)Rλ ,m(τ,s)dτ, m ≥ 1, and Rλ (t,s) =

∞

∑
m=1

Rλ ,m(t,s).

By the formal of fundamental solution Uλ ,α(t,s) and the boundedness of operator Aλ (t) for every
λ > 0, Lemma 18, Remark 19 and Lemma 27 show that wλ (t) is the unique solution to L

sD
α
t wλ (t)+

Aλ (t)wλ (t) = ξλ (t). Also sJ1−α
t wλ (s) = 0 is easy to check.

Let us end this proof, from R(z;Aλ (·))→ R(z;A(·)) as λ → ∞ in B(X), we get that ψλ ,s(t − s)→
ψs(t − s) in B(X), and Wλ (t,s)x → W (t,s)x as λ → ∞ for x ∈ D(A ). Consequently, Uλ ,α(t,s)x →
Uα(t,s)x, ξλ (t) → 0, as λ → ∞, for s+ ε ≤ t ≤ T with every ε > 0, we have limλ→∞ wλ (t) = 0
and then limλ→∞ xλ (t) = x(t) for t ∈ (s,T ]. So x(t) is unique. Lemma 16 shows that A(·)ψs(s) ∈
C((s,T ];B(X)), Lemma 24 shows that Uα(t,s)xs is strongly continuous for all t ∈ (s,T ], and then
A(t)Uα(t,s)xs is also strongly continuous for t ∈ [s+ ε,T ], s ∈ [0,T ] for every ε > 0, which implies
that L

sD
α
t x belongs to C((s,T ],X). Thus, x is a classical solution. The proof is completed.

�

4. Classical solutions to problem (1)

In this section, the classical solution of problem (1) is obtained under the properties of fundamental
solution and the Hölder continuity assumption of f .

Theorem 32. Let (P1)-(P3) be satisfied. Assume that f is Hölder continuous with type (ζ ,K). Then
the problem (1) has, for every xs ∈ D(A ), a unique classical solution given by

x(t) =Uα(t,s)xs +
∫ t

s
Uα(t,τ) f (τ)dτ.

Proof. It follows from the pervious arguments that Uα(t,s)xs is the unique classical solution of the
initial value problem L

sD
α
t x(t)+A(t)x(t) = 0, sJ1−α

t x(s) = xs. Put

v f (t) =
∫ t

s
Uα(t,τ) f (τ)dτ, 0 ≤ s < t ≤ T.

It remains to check that v f is the unique solution of problem

(34) L
sD

α
t x(t)+A(t)x(t) = f (t), sJ1−α

t x(s) = 0.
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Since f is Hölder continuous, from Remark 19, it yields that f satisfies (P4) with values in X , we also
have

∥v f (t)∥ ≤
∫ t

s
∥Uα(t,τ) f (τ)∥dτ ≤C(t − s)α∥ f∥∞,

which proves v f (s) = 0 and then sJ1−α
t v f (s) = 0 is easy to verify. This derives from Lemma 27 that

v f is a solution of the problem (34), and v f ∈ D(A ). Moreover, the uniqueness follows the classical
arguments. From Lemma 23 and the Hölder continuity of f , as the same way in Lemma 28, one can
prove L

sD
α
t v f ∈C((s,T ],X). Hence, by Definition 10, v f is a unique classical solution to problem (34)

as well as x is a unique solution to problem (1). The proof is completed. �

Remark 33. Let us mention that if A(t) degenerates to linear unbounded operator A, we see that the
operator Uα(t,0) can be regarded as Tα(t) in Remark 26, and there is an analogous form of classical
solution in the setting of autonomous fractional evolution equations given by

x(t) = tα−1Tα(t)x0 +
∫ t

0
(t − τ)α−1Tα(t − τ) f (τ)dτ, t ∈ (0,T ].

For more details, see [36, 41].

5. An application

In this section, we apply the abstract theory developed in this work to a classic parabolic type equation,
as an application, we concern a time dependent fractional Schrödinger type equation

L
0D

α
t x(t,z)−∆x(t,z)+m(t,z)x(t,z) = f (t,z), t > 0, z ∈ Rd, 0J1−α

t x(0,z) = 0,

where d ≥ 1, the potential m is not bounded, see [29] associated with the case of α = 1. We assume
that there is a non-negative potential W ∈ L1

loc(Rd,dz) such that m satisfies the following properties
(where c1, c2 are positive constants)

c1W (z)≤ m(t,z)≤ c2W (z), a.e. z ∈ Rd, and all t ∈ [0,T ],

|m(t,z)−m(τ,z)| ≤ c2W (z)|t − τ|ϑ , a.e. z ∈ Rd, and all t,τ ∈ [0,T ], ϑ ∈ (0,1].

We now define a sesquilinear form defined on V ×V for every fixed t in [0,T ] by

a(t,u,v) =
d

∑
k=0

∫
Rd

∂ku ·∂kvdz+
∫
Rd

m(t,z)u · vdz,

D(a(t, ·, ·)) =
{

u ∈ H1(Rd),
∫
Rd

m(t,z)|u|2dz < ∞
}
.

Under these arguments, the following spaces are equivalent

D(a(t, ·, ·)) =V =:
{

u ∈ H1(Rd),
∫
Rd

W (z)|u(z)|2dz < ∞
}
, for all t ∈ [0,T ].

The space V endowed with the norm

∥u∥V :=
[∫

Rd
|∇u|2dz+

∫
Rd

|u|2dz+
∫
Rd

W |u|2dz
]1/2
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is a Hilbert space and V ↪→ L2(Rd) (see e.g. [29]). Additionally, a(t, ·, ·) is densely defined and
satisfies the continuity condition, i.e., there exists a non-negative constant M (independent of t) such
that

|a(t,u,v)| ≤ M∥u∥V∥v∥V , for all u,v ∈V, and all t ∈ [0,T ].

Moreover the coercive condition holds, i.e., there exist a δ > 0 and a real number γ such that

Rea(t,u,u)≥ δ∥u∥2
V − γ∥u∥2

L2(Rd)
, for all u ∈V, and all t ∈ [0,T ].

Fix v ∈V and consider the functional

ϕ(t,v) = a(t,u,v), v ∈V, t ∈ [0,T ].

By the continuity condition of a(t, ·, ·), let us define A (t)u = ϕ(t, ·), it is easy to check that A (t) is a
continuous operator from V into V ′ by the following space form

D(A (t)) :=
{

u ∈V, ∃g ∈V ′, s.t. a(t,u,v) = ⟨g,v⟩, ∀v ∈V
}
, A (t)u = g,

where ⟨·, ·⟩ the dualization between V and the dual space V ′ (i.e. ⟨u,v⟩ denotes the value of u at v for
v ∈ V and u ∈ V ′). Therefore, it follows that A(t) := −∆+m(t, ·) is indeed A (t) in V ′. This means
that

D(A(t)) =
{

u ∈ D(A (t)) : A (t)u ∈V ′} , and A(t)u = A (t)u for u ∈ D(A(t)).

Hence, the time-varying parameter fractional Schrödinger type equation can be abstracted as the
equation (1). On the other hand, one can see that there is a uniform constant M > 0 such that the
sesquilinear form satisfies

|a(t,u,v)−a(τ,u,v)| ≤ M|t − τ|ϑ∥u∥V∥v∥V , for all t,τ ∈ [0,T ], u,v ∈V.

Furthermore, we find that the operator −A(t) generates an analytic semigroup in V ′. Hence (P1) and
(P2) are valid. By [38, Theorem 1.24], the domain of A (t) coincides with V and so it is independent
of t, then A (t) can commute in A(t). In addition, by the definition of A (·), we have for u ∈V , v ∈V

⟨(A (t)−A (τ))A (τ)−1u,v⟩=⟨A (t)A (τ)−1u,v⟩−⟨A (τ)A (τ)−1u,v⟩

=a(t,A (τ)−1u,v)−a(τ,A (τ)−1u,v).

Therefore, the Hölder condition on the form implies that

|⟨(A (t)−A (τ))A (τ)−1u,v⟩| ≤M|t − τ|ϑ∥A (τ)−1u∥V∥v∥V

≤C|t − τ|ϑ∥u∥V∥v∥V .

Hence, (A (t)−A (τ))A (τ)−1u ∈V ′ for u ∈V . By the density of V in V ′, it follows that

∥(A(t)−A(τ))A(τ)−1∥B(V ′) ≤C|t − τ|ϑ .

We conclude that (P3) is also satisfied. Assume that f is Hölder continuous with type (ζ ,K), by
Theorem 32, there exists a unique classical solution. In particular, if f ≡ 0, there exists a fundamental
solution of present problem by Theorem 30.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10 Feb 2024 08:57:32 PST
230130-Zhou Version 4 - Submitted to Rocky Mountain J. Math.



NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 30

References

[1] P. Acquistapace, F. Flandoli, B. Terreni, Initial-boundary value problems and optimal control for nonautonomous
parabolic systems, SIAM J. Control Optim., 29(1)(1991), 89–118.

[2] E. Affili, E. Valdinoci, Decay estimates for evolution equations with classical and fractional time-derivatives, J.
Differential Equations, 266(7)(2019), 4027–4060.

[3] E. Alvarez, C. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equa-
tions, Nonlinear Anal., 181(2019), 24–61.

[4] E.G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Thesis, 2001.
[5] P.M. de Carvalho-Neto, G. Planas, Mild solutions to the time fractional Navier-Stokes equations in RN , J. Differential

Equations, 259(2015), 2948–2980.
[6] T.Cazenave, A. Haraux, An Introduction to Semilinear Evolution Equations, Vol 13, Oxford University Press, 1998.
[7] K. Diethelm, The Analysis of Fractional Differential Equations, Springer Berlin Heidelberg, 2010.
[8] H. Dong, D. Kim, Lp-estimates for time fractional parabolic equations with coefficients measurable in time, Adv.

Math., 345(2019), 289–345.
[9] H. Dong, D. Kim, Lp-estimates for time fractional parabolic equations in divergence form with measurable coeffi-

cients, J. Funct. Anal., 278(2020), 108338.
[10] H. Dong, Y. Liu, Weighted mixed norm estimates for fractional wave equations with VMO coefficients, J. Differential

Equations 337(2022), 168–254.
[11] M. Feckan, J. Wang, Periodic impulsive fractional differential equations, Adv. Nonlinear Anal., 8(2019), 482–496.
[12] J.W. He, Y. Zhou, Cauchy problem for non-autonomous fractional evolution equations, Fract. Calc. Appl. Anal.,

25(2022), 2241–2274.
[13] J.W. He, Y. Zhou, L. Peng, B. Ahmad, On well-posedness of semilinear Rayleigh-Stokes problem with fractional

derivative on RN , Adv. Nonlinear Anal., 11(2022), 580–597.
[14] H.R. Henrı́quez, V. Poblete, J.C. Pozo, Existence of solutions for the semilinear abstract Cauchy problem of fractional

order, Fract. Calc. Appl. Anal., 24(5)(2021), 1409–1444.
[15] H.R. Henrı́quez, J.G. Mesquita, J. C. Pozo, Existence of solutions of the abstract Cauchy problem of fractional order,

J. Funct. Anal., 281(4)(2021), 109028.
[16] O.K. Jaradat, A. Al-Omari, S. Momani, Existence of the mild solution for fractional semilinear initial value problems,

Nonlinear Anal., 69(2008), 3153–3159.
[17] T. Kato, H. Tanabe, On the abstract evolution equation, Osaka Math. J., 14(1962), 107–133.
[18] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-

Holland Mathematics Studies, vol. 204, Elsevier Science B.V, Amsterdam, 2006.
[19] I. Kim, K.H. Kim, S. Lim, An Lq(Lp)-theory for the time fractional evolution equations with variable coefficients,

Adv. Math., 306(2017), 123–176.
[20] A. Kubica, M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent

coefficients, Fract. Calc. Appl. Anal., 21(2018), 276-311.
[21] T. Langlands, B. Henry, S. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells:

finite domain solutions, SIAM J. Appl. Math., 71(4)(2011), 1168–1203.
[22] Y. Li, H. Sun, Z. Feng, Fractional abstract Cauchy problem with order α ∈ (1,2), Dynamics of PDE, 13(2)(2016),

155–177.
[23] C. Lin, G. Nakamura, Unique continuation property for multi-terms time fractional diffusion equations, Math. Ann.,

373(2019), 929–952.
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