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IMPLICIT FRACTIONAL DIFFERENTIAL EQUATIONS WITH ADVANCED
ARGUMENTS AND THE CONVEX COMBINED CAPUTO DERIVATIVE
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ABSTRACT. The purpose of this article is to prove the existence and uniqueness results for a class
of implicit fractional differential equations involving the combined Caputo fractional derivative with
advanced arguments by using the fixed point theorems of Banach and nonlinear alternative of Leray-
Schauder. We will also establish the Ulam stability and give some examples to show the applicability of
our results.
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1. Introduction

-
(o]

17
;g Tractional calculus has become a very important tool in modeling of many phenomena in applications
;o and sciences such as physics, biology, finance, engineering, stability, controllability and rheology.
oo Itcan better describe the memory properties of the physical process than the standard integer order

o, calculus. For more details on the applications of fractional calculus, the reader is directed to the
oo books of Baleanu et al. [5] and Graef et al. [8]. In [1, 2, 3], Abbas et al. studied several problems
s with advanced fractional differential and integral equations and presented various applications. In
—— [6, 7, 9], the authors presented some results on the fractional differential equations with Riesz and

24

s Riesz-Caputo fractional derivatives. Salim et al. [12, 19, 20, 21, 24, 23] addressed the existence,

o stability, and uniqueness of solutions for diverse problems with fractional differential equations using

o, various fractional derivatives and different types of conditions.

OCDgtlvgza’y

28
. In this paper, we consider the convex combined Caputo fractional derivative which is a

5o convex combination of the left Caputo fractional derivative of order {; and the right Caputo fractional

v derivative of order ¢, on [0, »]. The main feature of the convex combined Caputo fractional operator is

5 that it is a two sided operator, this property plays a decisive role in the fractional modeling. See [4], for

45 more information.

34

5 Mathematician Ulam originally highlighted the stability problem in functional equations in a 1940

% presentation at Wisconsin University. S. M. Ulam introduced the following challenge: ”Under what
— conditions does an additive mapping exist near an approximately additive mapping ?” [30]. The

- following year, in [10], Hyers provided an answer to Ulam’s problem for additive functions defined

50 On Banach spaces. In 1978, Rassias [26] demonstrated the existence of unique linear mappings near

40 2020 Mathematics Subject Classification. 26A33, 34A08.

41 Key words and phrases. Combined Caputo fractional derivative, implicit problem, existence, convex, fixed point, Ulam
42 stability, advanced argument.

11 Feb 2023 10:54:45 PST
221111-Salim Version 2 - Submitted to Rocky Mountain J. Math.


http://msp.org/
https://doi.org/rmj.YEAR.-
https://doi.org/rmj.YEAR..PAGE

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

FRACTIONAL PROBLEM WITH THE CONVEX COMBINED CAPUTO DERIVATIVE 2

1 approximate additive mappings, generalizing Hyers’ findings. Several research articles in the literature
2 address the Ulam stabilities of various types of differential and integral equations, see [29]. Luo et
3 al. [16, 15, 17] studied the Ulam stability of several differential fractional problems with some types
4 of delay. In [22, 24, 13], the authors studied several problems with advanced fractional differential
‘5 equations and presented various stability results and some applications.

The authors of [6] studied the existence of solution for the following boundary value problem:

{%mwmzaaww,ee&zw%
@(O) = (o, (P(%) = @,

E where gCD)’f is a Riesz-Caputo derivative of order 0 < v <1, g: ® x R — R a continuous function
12 and ¢, @,, € R. Their arguments are based on Leray-Schauder fixed point theorem, and Schauder’s

13 fixed point theorem.
14

15 In[14], Li and Wang discussed the following fractional problem:

g 6D{p(6) =¥(6,0(0)), 6€[0,1], 0<y<I,

18 (p(O):a, ‘P(l):b‘P(n)7

19 where RCDY is the Riesz-Caputo derivative, ¥ € C([0,1]x [0, +),[0,+0)),0 <7 < 1,a>0,0 < b <

20 2. They found the positive solutions by applying the technique of monotone iterative.
21

22 Naas et al. [18] investigated the existence and uniqueness results of the following fractional

23 differential equation with the Riesz-Caputo derivative:

. { RCD54(0)+ 3 (6, 5(6),KCDS 5(0)) =0,0 € ¢ :=1[0,T),

zz #(0)+(T)=0, wusx(0)+0s(T)=0,

27 where 1 < 0 <2and,0<¢< l,chF is the Riesz-Caputo fractional derivative of order k € {¥,¢},
28 F: J xR xR — R, is a continuous function, and i, are nonnegative constants with yt > ¢. The
29 existence and uniqueness of solutions of the above cited problem are demonstrated with the Riesz-
30 Caputo derivatives via Banach’s, Schaefer’s, and Krasnoselskii’s fixed point theorems.

31

32 In this work, we investigate the existence, uniqueness and stability results for the following implicit
33 fractional problem:

O §DIHTE(6) = £(8,8°%, DIS7E(0)), if 6 €©:=10,4],

36 (2) £(0) = %,

7 ) E(0) = w(6), if 0 €[+ d].

Z% where ng}’CM is the convex combined Caputo fractional derivative of order §,& € (0,1], y € [0, 1],

o 0>0,f:0xC([0,6],R) x R — Ris a given function, y € C([5, s+ 6],R), and § € R. We denote
. by &9 the elements of C([0, 8], R) defined by

42 E9=E(0+5):5€]0,8].
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1 This paper is organized as follows: Section 2 introduces some preliminaries, definitions and lemmas.
> In section 3, we give some existence and uniqueness results for the problem (1)-(3) that are based on
'3 Banach contraction principle and the nonlinear alternative of Leray-Schauder fixed point theorem. In
"4 section 4 we prove that the problem (1)-(3) is Ulam stable. Finally we present some examples to show
5 the validity of our results.
6
3 2. Preliminaries
® In this section, we recall some notations, definitions and previous results which are used throughout
2 this paper.

19 We denote by C(0,R) the Banach space of all continuous functions from @ into R with the norm
11

12 1G]l = sup{|5(6)]: 6 € B}

E Let C([5, >+ 6],R) be the Banach space with the norm

P 1€ | peers) = Sup{IE(8)] : 6 € 5,3+ 8]},

15
15 and C(]0,0],R) be the Banach space with the norm

s 161110,6) = sup{[&(6)] : 6 € [0, 8]}

18
— Let

;% Y={&:[0,5+8] +R:&lo € C(O,R) and &|, .15 € C([5¢, ¢+ 8], R)}.
o, We note that 1 is a Banach space with the norm

22 ISl = sup [E(6)].

ZZ Definition 2.1 ([11]). Let §; > 0. The left and right Riemann-Liouville fractional integrals of a function
25 @ € C(O,R) of order §; are given respectively by
26

- 0

27 oI§'¢(9>=r(1§1)/0 (6—p)*o(p)dp,
z%and

= oI} <e>=r(21) [ (-0 op)ap.

32 Definition 2.2 ([4, 25]). Let {;,{; > 0. The combined Riemann fractional integral of a function
33 @ € C(O,R) of order (£1,8,) is defined by
34

- 015 %0(0) = ol§' 9(8) + o120(0),
3 ywhere olgl and glff are the left and right fractional integrals of Riemann-Liouville of order {; and §;
37 respectively.

38
a9 Definition 2.3 ([11]). Let §; € (n,n+ 1], n € N. The left and right Caputo fractional derivatives of a

40 function ¢ € C"™1(®,R) of order & are given respectively by
a1

4 Créioig) 1 /9 _ oyi=Gi gt 1)
42 ODG (P<9) F(”l+1_Cl) 0 (9 p) ¢ (p)dpv
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1 and
: Cnl (= g 81 y(n+1)
— CDS (0 / —9)" 51\ dap.
% 20(0) = Tt 1-0) (p—0)"*e""(p)dp
‘5 Definition 2.4 ([4, 25]). Let {1, € (n,n+ 1],y € [0,1]. The combined Caputo fractional derivative
‘6 of afunction ¢ € C"71(®,R) of order ({1,8,) is given by
7 . .
o 602 979(8) = ¥ §DG 9(0) + (—1)" (1 - 1)gD29(6),
. \here €DY is the left Caputo derivative and CDS is the right one
10 oo p ol 8 -

" Lemma 2.5 ([11]). IfE € C"*1(O,R) and 1,4 € (nyn+ 1], y € [0, 1], then we have
12

13 & cnb -

0 o oo =s0- £ 5

15

— and

6

17 . no(—1 ké(k) 2

" o1 §052(0) = (1 | g(0) - Y TETH gy
E k=0

2E Consequently, we may have

21 .

2 oI @ EDSRTE(9) = yolg' DG E(0)+ (=)™ (1) 612 GD2E(B)).

2 In particular, if 0 < {1, & < 1, then we obtain
24

25 ol2 2 §DSVE () = £(0) —YE(0) — (1 — )& ().

26
>, Remark 2.6. If we take y = % and §) = &, then the combined Caputo fractional derivative coincides

g With the Riesz-Caputo derivative.

:2% 2.1. Some Fixed Point Theorems.

?Z Theorem 2.7 (Banach’s fixed point theorem [28]). Let E be a Banach space and 7 : E — E a

82 contraction, i.e. there exists k € [0, 1) such that
33

34 172(81) = A (G| < k|G —&all,  forall §1,& €E.

% Then A has a unique fixed point.
36

BZ Theorem 2.8 (Nonlinear alternative of Leray-Schauder [28]). Let E be a Banach space and C a
38 nonempty convex subset of E. Let U be a nonempty open subset of C, with 0 € U and ¢ : U—Ca
39 continuous and compact operator.

40 Then, either

41 (a) F has fixed points or

42 (b) there exist x € U and @(0,1) with y = @ ()).
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1 3. Existence Results

% Consider the following fractional differential problem:

T @ DS TE(9) = p(6), if0€0,0<8,6<1,7€[0,1],
505 (0) =&,
%(6) E(0)=w(0), if0¢cl[xx+8],8>0,

s where U is a continuous function, and y € C([, >+ 6], R).

° Lemma 3.1. Let §,5 € (0,1],7€[0,1], and u : ® — R be continuous. Then, the problem (4)-(6)

1 . . .
° hasa unique solution given by
11

12 ( _; %ng—l $)ds 1 0 — 081y (s)ds
o G- gy fy RO g ) @98 w0
5D EO=3 1 [T s

- iy ), 0% uas, irece,

% v (), if 0 € [sx,x+8].

E Proof. Suppose that £ satisfies (4)-(6), then

" GDY2TE(0) = u(6).

-o By Lemma 2.5, we have

23 0I5 EDEATE (0) = £(6) — 15 (0) — (1 —1)&(59),

Z% this implies that

% E(0) = YE(0)+ (1 - 1)E(G) + oI5 u(6)

. _ . LI

o = O+ (1180 + gy [ (09 u(s)as
o * r(lcz> /9%<s—9>¢2‘1u<s>ds.

52 For 8 =0, we have

33

34 g(%)(l_?’):éo(l—y)—r(l@/oﬂsé—lu(s)d&

35 Then, the final solution is given by:
36

- 1 » 1 0

37 0)= —7/ s u(s)ds + / 0 — )5 u(s)ds

v §0) =t~ gy [, w099l

39 + / s—0)27 u(s)ds.

- AU

41 Conversely, we can easily prove by lemma 2.5 that if § satisfies equation (7), then it satisfied the
42 problem (4)-(6). O
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1 Lemma 3.2. Let f: © x C([0,0],R) x R — R be a continuous function. Then the problem (1)-(3) is
2 equivalent to the following integral equation:

3 ( P 0
Z éo—r(lcz)/o SCz—lf(s,és’(@(s))ds—i—r(lm/o (Q_S)Q—lf(s’gs,p@))ds
S EO= L T e e ps)ds,

7 ey G0 e, ifece,

B w(0),  if 0€ x40,

— where @ € C(0O,R) satisfies the following functional equation

11

12

13
14

2(6) = 1(6,6°,0(6)).

~~  Let us assume the following assumptions:

= (BI) The function f: © x C([0,0],R) x R — R is continuous.
. (B2) There exist constants A; > 0 and 0 < A, < 1 such that

17
18
19

20

|f(97X7B) _f(eazaﬁﬂ < AIHX_ZH[Oﬁ]_‘_;LﬂB_B‘a

— for any x,% € C([0,8],R), B,B € Rand 6 € ©.
-~ We are now in a position to prove the existence result of the problem (1)-(3) based on the Banach

2T contraction pr1nc1ple.

22 Theorem 3.3. Assume that the assumptions (B1)-(B2) hold. If

23

2 (8)
25

211%C2 + ll%g
(1-2)C(&+1)  (1-2)0(& +1)

<1,

25 then the problem (1)-(3) has a unique solution on ©.

% Proof. Consider the operator A : ¥ — Y defined by:

29

30

31

L e pas s L [T (6= )8 p(s)ds
G- gy b F P s [0 =99 ety

22 A5(0) = +F(1Cz) /:(s—e)@—lp(s)ds, 0co,
Z% L v(6), 0 € [5,+ 8.

BE Clearly, the fixed points of the operator A are solutions of the problem (1)-(3).
37 Let &,z € Y. If 0 € [5r,5c+ 3], then

38

39
40 If 6 € O, we have

41

42

11 Feb 2023 10:54:45
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1 0
Frgy ) (00 ) —h(s)las
.
ST AR COROIS

where  and h are two functions verifying the functional equations:
2(8) = £(6,8°,0(6)),
h(0) = £(0,2°,h(0)).
By (B2), we have
" £2(6) —h(6)] = |£(6,£°, (6)) — £(6.2°,h(6))]
b < ME® = 200,61 + M2l 2(0) — h(6)].

14 Thus,

= M 0 _ 0

16 92(8) —h(0)] < ——1&" — 2" | j0.6]-

© 1-—2A

1? Then, for each 68 € ®, we have

© A .

19 1 -1y g5 s

= AC(0)—Az(0)| < —/ §°2 —Z ds

21 M /9 _

o + 6 —s)! S —20.51ds

22 (l_lﬁr(cl) 0 ( ) Hé H[O,S}

23 Afl P 61

. T R A S

z% (1_)('2)F(C2) 0 ( ) Hé H[O,5]

o [ Ay 2 A 551 A2

- < et T Tt T &zl
27 (I=R)0(G+1)  (1=2)0(G+1)  (1-2)0(&+1)
28 [ 2 3% A5

29 < + 16 =2l

o (1=R)0(G+1) * (1-2)0(E +1)

31 Thus,

32

nn 211%(:2 Al%g

% A& —Az|ly < + —Z||r.
> e =ade < | T mrG vy T arg e |1
%_ Consequently, by the Banach contraction principle, the operator A has a unique fixed point which is a
% solution of the fractional problem (1)-(3). O
37

3s Remark 3.4. Let us put

39 q1(8) =1£(0,0,0)], &1 = g3, 4> = g5.

0 Then, the condition (B2) implies that

41

i 1£(0,2:B) < q1(0) + g3l xll0.5) + a31Bl,
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for0 €0, x €C([0,6],R), B €Rand g, € C(O,R,), with

q1 = supq1(0).
0cO
Our second existence result for the problem (1)-(3) is based on Leray-Schauder’s fixed point
theorem.

Theorem 3.5. Assume that the assumptions (B1)-(B2) hold. If

2q3%€2 q;%éll
: (=G 1) (g +1)

11 then the implicit fractional problem (1)-(3) has at least one solution on ©.

12 Proof. Transform problem (1)-(3) into a fixed point problem.
13

14 Step 1: The operator A : Y — Y is continuous.

5 Let {&,}en be a sequence such that &, — & in Y. If 0 € [5, >+ 8], then
16

<1,

[efe|~]ofo]s]e]n]~

0 146(0) - AG(6)| =0

18 If 0 € O, we have

AE(0)-45(0)] < s[5 o) - plolas
g 0-9 (0 - ool
i ) =08 (o) et

2E By (B2), we have
27

e 1#0(8) = 2(8)| < M1&) — E° 0.6+ A2 20(8) — 92(6)]-

28

o9 Then,

30 M e e

5 #9n(0) — 92(0)] < 1—/12”2:" —&7l0,8)-

%2 Thus,

33 B

o 46,(0) - 4£(0)] < s [ 2 - £ s

% " = (1-2)T(&) Jo n =5 0]

36 M o _

36 - 0 — Gi—1ygs _ g5 d
. R S vrasl GO (S P
:g )Ll /% H—1)£s s

oy T (s—0)2E ds.
39 +(1_)~2)F(C2) 0 (s ) 162 — ¢ ||[0,6] S

40 By applying the Lebesgue dominated convergence theorem, we get
41

2 |AE,(0) —AE(B)] — 0 asn — .
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Hence,
|AE, — A |y — 0 asn — oo,

which implies that A is continuous.

Let R > 0 and define the ball
Dr={E€Y: & <RY.
It is clear that Dg is a bounded, closed and convex.

-
[Bfefe]~]ofo]s]w]n]-

Step 2: A(Dg) is bounded.

1 Let& € Dg. If 6 € [, ¢+ 8], then
12

. AS(0) = [w ()] < Wl pers)-

13
E If 6 € ©, we have

15 1 » 1 6
— < -1 7/ _ G-l
0 AS(O)] < Jool + gy [ Alas + g [ (0= pls)lds
- 1 »

+7/ — )%t ds.
% TG Jo (s—0)%2""|@(s)|ds
2o From hypothesis (B2), we have
% 92(6)| = |£(6,5(6),4(0))]
s < q1(0) + g511E% 0.6 + 451 2(0))]
24 < g1 + a1l +a3/9(0))
25 < q1+ @R+ q3]0(0)].
26
2zThen,
el (o) < BLEEE
2 =4
80 Thus,
T + ‘R)
2 AE(0)] < &l + [ DB [y
33 9
34 (611+Q2R)/ &1
34 + TR g —g)hilgs
5 G-t @) o @7
36 (4 + 45R) /" Gt

4 DTN (- )2 s

o (-G Jo 077
:E §|€0’+ (qthZR)%z + (qthZR)%l
0 (1-g3)T(&+1)  (1-gy)T(Gi+1)
a N (4} + q3R) =
2 (1-¢3)I'(&+1)
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2q; + 3R =2 (g} +@R)#
(1=-g3)T(&+1)  (1-g3)T(&+1)

<18l +
=K.

’

[AE ]Iy < max{|| ¥l 45, K}
Hence, A(Dg) is bounded.

BENEENENE
—
=
[¢]
=

Step 3: A(Dg) is equicontinuous.
11 Let 61,6, € O, where 0; < 6, and & € Dg. Then,

—_
o

12

—_ 6, »

B AG(e) L) =‘—F(1€2) [ ptods = s [ ployds

15 6 ”

> Py 9 e s [ 0 s
% 1 elscz_l YL B v

5 T g fy, o

20 0 P

ZZ _F(lcl)/o (Gl—s)(:‘lp(s)ds—r(lé,z) /91 (s—6)2 " o(s)ds
2 2 ® G-

- <tigy fy o elds

2 \

o ol RO CENE B[

27 6

5 i o (895 s

o i o 6= 0% = (=05 (o)

st 0

" i o =80 s las

34 201+ R) o6 p6 @i +aR) oo ga
5 S-gren® T grg e 0
% (91 +45R) \

7 +(1—q{g)r(2§1+1)(92_91)g

" (41 +45R) A

- -1

11 Feb 2023 10:54:45 PST
221111-Salim Version 2 - Submitted to Rocky Mountain J. Math.




Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

FRACTIONAL PROBLEM WITH THE CONVEX COMBINED CAPUTO DERIVATIVE 11

1 Then, when 8; — 6,, the right-hand side of the inequality above tend to zero, therefore the operator
2 A is equicontinuous. According to the Arzela-Ascoli theorem, the operator A is compact.

3

4+ Step 4: A priori bounds.

5 We now show that there exists an open set U C Y, with § # @AE, for @ € (0,1) and § € JU. Let
s & e€Yand & =@AE for some 0 < @ < 1. Thus, for each 6 € [, 5+ §|, we have

% (6) = @A (6)]

o <N Wl e45)-

10 If 6 € ©, we have

11

o 5(0) =mAL(6)

13 o 61 Y /9 &1

— O+ =——— 52 s)ds+ 0 —s)°! s)ds
15 ) »

. + / s—0)27 o(s)ds

o rG) o (s—6)=" p(s)

iThen,

19 2(q; +@3lIE )= | (g7 +5lIE ()"

20 (1=g)(&+1) ~ (1=g)l(G+1)

2! Thus, for each 6 € [0, s+ 8], we have
22

2 2¢i %% q; x5

. €0 < A () Y (SR M (AN (SRa)
Z% . 2q§%42 @%Cl

> (I=g)NG+1)  (1-g)l(G+1)

28 =K.

2 Let
2% U={&eX [l <x+1}.

5> Thus, by our choice of U, there is no & € dU such that § = @A for 0 < @ < 1. As consequence,
43 from Leray-Schauder’s fixed point theorem, we deduce that the operator A has at least one fixed point

52 Which is a solution of the problem (1)-(3). O

35

36 4. Ulam-Hyers Stability

87_TIn this section, we will establish the Ulam stability for the problem (1)-(3).
38

39 Definition 4.1 ([27, 22, 1]). Problem (1)-(3) is Ulam-Hyers stable if there exists a real number Cy > 0
40 such that for each € > 0 and for each solution & € Y of the inequality

:1? ©) OCDgflgz’yé(e) _f(67é(9)7 ngfhgz’yé(e)) < E, 0c @7
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there exists a solution & € Y of the problem (1)-(3) with

1E(0)—E(0))| <Cre, 6€O.

€ Y of the problem (1)-(3) with
£(8)—E(0))| < ¢re, 6 €O.

10 ¢ e CY(®,R) (which depend on &) such that
n (1) |4(6)| <€, foreach € ®.
2) OCDgtvaZ;Yé(e) = f(6,&°, ng@z;Yé(e)) +4(0), foreach € 0.

E Lemma 4.4. The solution of the following perturbed problem
15

— SDESTE(9) = £(0,E%, DETE(D)) +£(8), 0 €O,

16

0 £(0) =&,
1 §(0)=w(B), 6¢[xx+4],
;%isgivenby
21 1 e 1 o _ o1
5 S gy ) s g [ (098 et
23
24 L [7 gt __ L [T
QE fo) +F(C2)/9 (s—0)2""o(s)ds F(Cz)/o s°27 4 (s)ds
26
. 1 6 1 *
_ G-t _ 6H—1 .
7 +r(€l)/0 (6—s) E(s)ds+r<€2)/9 (s—0)2 \e(s)ds, if0 €O,
2(9) L w(0), if 0€ [ x+90].
31 Moreover, the solution satisfies the following inequality
32
33 _ _ ! e ! o _ -1
80— [80— gy [, 7 ws + s [0 -9 plsyas
35
_ 1 ” _ szl
o Y RE /9 (s—0)% o(s)ds|
38 2% 251
Z% < 2 + €, foreachB €0,
o C(&H+1) T +1)

12

Definition 4.2 ([27, 22, 1]). Problem (1)-(3) is generalized Ulam-Hyers stable if there exists ¢; €
C(RL,Ry), ¢4(0) = 0 such that for each solution § € Y of the inequality (9) there exists a solution
3

Remark 4.3. A function & € X is a solution of the inequality (9) if and only if there exists a function

‘E Theorem 4.5. Assume that (B1)-(B2) hold and that the condition (8) is verified. Then the problem

42 (1)-(3) is Ulam-Hyers stable.
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Proof. Let £ € Y be a solution of the inequality (9) and & € Y a solution of the problem (1)-(3), then

()~ &(6)] = [£(6) — [f0 -y [ & (o)

; o — 5 n(s)ds
+ (Cl)/(e Yo h(s)ds +

_‘5 0—*4441/ “ o

g 095 s s [ 0% (o)

(lf;z) /9 “(s—0)5 n(s)as |

10 (&
1 +1“(1C2)/0 s27 1 o(s) — h(s)|ds
0
577 ) 095 0(0) Ao

44444 4
[2a[z[s][s][=]3]e]e|~]o]a]s]e]|r]|-

! “(s—)e! s)—h(s)|ds
Fgy )y 605 Il —h(s)las

-
~

E By hypothesis (B2), we have
19

o 12(6) —h(s)| < M11E% = &% 0,51 + A2l 2(8) — 1(6)].
2ZThen,

- M )

28 |W@)—M9N§1_AJK =& 10.6)-

Z:Thus,

26 o) E(o)] < 2,5 pys| A% _
2E Ay 551 _ Ay % _
30 +X1—MHYQ+1N§_émﬁwl—MﬂKé+lﬂé_éh
% 2,5 pys|

o MG+ TG+n)°

Sz 2)“1%42 )Ll%(:l =

= - arGy i1
szThen,

s 2% N pys|

o : HG+1) TG +1) _

) el e
2 (I-2)I(&+1) (1-2R)I(&+1)
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1 Consequently, the problem (1)-(3) is Ulam-Hyers stable. If we take ¢(€) = Cr€ and ¢(0) = 0, then
> we get the generalized Ulam-Hyers stability of the problem (1)-(3). O

5. Examples

i
hd
> Example 5.1. Consider the following implicit problem which is an example of our problem (1)-(3)
% with Riesz-Caputo fractional derivative:

5

11.1
5 oL 1€% 0.5+ 505’2’25(9)'
20222 _
- (10 0Dy E(0) = 000 O . 6<(o,1],
i1 (1) £(0)=1,
= 312) £(0)=y(6), 01,2,

T, where y € C([1,2],R).

15

—  Set

0 12110+ 18]

17 _IX1l0,8]

19 Clearly, f is a continuous function, then the hypothesis (B1) is satisfied.

20

21 Forany x,j% € C([0,8],R), B,B € R and 6 € [0,1], we have

22

il _ = 1 _ =

23 ‘f(OaXaﬂ) _f(97X7ﬁ)’ < mwl—lu[o(ﬂ + ‘ﬂ _ﬂH7
24

o5 then the assumption (B2) is satisfied with Ay = A, = 10106. Also we have

26 20 %2 N A1 B 2 N 1
% (I=2)0(&+1)  (1=2)0G+1)  (100e—1)%E (100 —1)%~
0 3

30 (100 — 1) %

31 ~ 0.0124992069352421

32

= <1,

33
Szfor »=1,0=0= % and y= % It follows from Theorem 3.3 that the problem (10)-(12) has a unique
35 solution on [0, 1]. Moreover the conditions of Theorem 4.5 are verified then the problem (10)-(12) is
36 Ulam-Hyers stable.

Z% Example 5.2. Consider the following problem:

1 1.1

39 111
6D7 1 °E(0)

20 111 Fcos(8) +51&°%0.5) +2
° a3) cpitig (g) -
o 3%(L+Mﬂmﬂ+

,_.
—_

‘7 6 < [0,1],

,_.
—_

0/ 2(0))
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1 (14) £(0) =1,
2 (15) E(6)=w(B), 6¢c]1,2],

> where w € C([1,2],R).

Set
Zcos(0) + 5[ xlljo.5) +2IB]
300(1+[|xllo.5 +1B1)

Obviously, f is a continuous function, then the hypothesis (B1) is met.

f(6,x,B)= 6 €10,1], x € C([0,8],R),B € R.

je|e]~]ofo]s

—_ | =
|= |3

Forany x,% € C([0,8],R),B,B € R and 6 € [0,1], we have

—_
N

—_
w

76.2.8)~ 70,2, < 535 [ 1~ Tlloa+216 - Bl

14

E Then, the hypothesis (B2) is verified with A| = ﬁ and Ay = ﬁ. Also we have
16

16 x
" 0. = 25 (Sl +21pl).

© S0q1(6) = 5557, 43 = gy and g3 = 5.

21 And as

2 245722 n 4" ~ 0.00339834257128931 < 1
v (I-g3)T(&+1)  (1-gT(&+1) ’

ZEfor »=1, = %, &= % and y = %. Then, Theorem 3.5 assures that the problem (13)-(15) has at
26 [least one solution on [0, 1]. Moreover

z% 2M 3% n A 251 _ 1 + %
oo (I=2)0(&+1)  (1=)T(Gi+1)  298T(3)  298I(%)
30 ~ 0.02039005542

31 <1,

32
. then by Theorem 4.5, we can deduce that our problem is Ulam-Hyers stable.

a Conclusion

35

BE In the present research, we have investigated existence and uniqueness results for a class of initial
37 value problems for implicit nonlinear fractional differential equations and combined Caputo fractional
38 derivative with advanced arguments. The fixed-point technique, namely the Banach contraction
39 principle and nonlinear alternative of Leray-Schauder fixed point theorem, was employed to reach
40 the necessary outcomes for the given problem. Also, we dedicated a section to the study of the Ulam
41 stability for problem (1)-(3). Illustrations are presented to show how the primary findings may be

42 implemented. Our results in the provided context are novel and add significantly to the literature on
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this emerging topic of research. Due to the small amount of publications on implicit combined Caputo
fractional differential equations, we believe there are several possible study paths such as coupled
systems, problems with infinite delays, and many more.

Declarations

1
2
3
4
5
6
. — Ethical approval This article does not contain any studies with human participants or animals per-
8 —. formed by any of the authors.
9
0

;o Competing interests It is declared that authors have no competing interests.

1
-~ Author’s contributions The study was carried out in collaboration of all authors. All authors read and
. approved the final manuscript.

12
13

14
;5 Funding Not available.

17 Availability of data and materials Data sharing not applicable to this paper as no data sets were
s generated or analyzed during the current study.

19

20

o1 References

22 [1] S. Abbas, M. Benchohra, J. R. Graef and J. Henderson, Implicit Differential and Integral Equations: Existence and
23 stability, Walter de Gruyter, London, 2018.

24 [2] S. Abbas, M. Benchohra and G. M. N’Guérékata, Topics in Fractional Differential Equations, Springer-Verlag, New
25 York, 2012.

o6 [3] S. Abbas, M. Benchohra and G. M. N’Guérékata, Advanced Fractional Differential and Integral Equations, Nova
- Science Publishers, New York, 2014.

7 [4] R. Almeida, D. Tavares, D. F. M. Torres, The variable-order fractional calculus of variations, Springer, Aveiro, 2019.
28 [5] D. Baleanu, Z. B. Giiveng, and J. A. T. Machado New Trends in Nanotechnology and Fractional Calculus Applications,
29 Springer, New York, 2010.

30 [6] F. Chen, D. Baleanu, and G. Wu, Existence results of fractional differential equations with Riesz-Caputo derivative,
31 Eur. Phys. J. 226 (2017), 3411-3425.

30 [7] F. Chen, A. Chen, and X. Wu, Anti-periodic boundary value problems with Riesz-Caputo derivative, Adv. Difference
. Equ. 2019 (2019). https://doi.org/10.1186/s13662-019-2001-z

— [8] J. R. Graef, J. Henderson and A. Ouahab, Impulsive Differential Inclusions. A Fixed Point Approch, De Gruyter,
il Berlin/Boston, 2013.

35 9] C.Y. Gu, G. C. Wu, Positive solutions of fractional differential equations with the Riesz space derivative. Appl. Math.
36 Lett. 95 (2019), 59-64.

37 [10] D. H. Hyers, On the stability of the linear functional equation,Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.

3g [11] A. A. Kilbas, H. M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations.
29 North-Holland Mathematics Studies, Amsterdam, 2006.

— [12] N. Laledj, A. Salim, J. E. Lazreg, S. Abbas, B. Ahmad and M. Benchohra, On implicit fractional g-difference equations:
40 Analysis and stability. Math. Meth. Appl. Sci. 2 (2022), 1-23. https://doi.org/10.1002/mma.8417

41 [13] 1. E. Lazreg, M. Benchohra and A. Salim, Existence and Ulam stability of k-generalized @-Hilfer fractional problem. J.

42 Innov. Appl. Math. Comput. Sci. 2 (2022), 1-13.

11 Feb 2023 10:54:45 PST
221111-Salim Version 2 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

FRACTIONAL PROBLEM WITH THE CONVEX COMBINED CAPUTO DERIVATIVE 17

[14] M. Li and Y. Wang, Existence and iteration of monotone positive solutions for fractional boundary value problems with
Riesz-Caputo derivative. Engineering Letters 29 (2021), 1-5.

[15] D.Luo and Z. Luo, Existence and Hyers—Ulam stability results for a class of fractional order delay differential equations
with non-instantaneous impulses, Math. Slovaca. 70 (2020), 1231-1248.

[16] D. Luo, Z. Luo, H. Qiu, Existence and Hyers-Ulam stability of solutions for a mixed fractional-order nonlinear delay
difference equation with parameters. Math. Probl. Eng. 2020, 9372406 (2020).

6 [17] D. Luo, K. Shah and Z. Luo, On the Novel Ulam-Hyers Stability for a Class of Nonlinear y-Hilfer Fractional

7 Differential Equation with Time-Varying Delays, Mediterr. J. Math. 16, 112 (2019).

[18] A. Naas, M. Benbachir, M. S. Abdo and A. Boutiara, Analysis of a fractional boundary value problem involving
Riesz-Caputo fractional derivative. ATNAA. 1 (2022), 14-27.

[19] A. Salim, S. Abbas, M. Benchohra and E. Karapinar, A Filippov’s theorem and topological structure of solution sets for
fractional g-difference inclusions. Dynam. Syst. Appl. 31 (2022), 17-34. https://doi.org/10.46719/dsa202231.01.02

11 [20] A. Salim, S. Abbas, M. Benchohra and E. Karapinar, Global stability results for Volterra-Hadamard random partial

12 fractional integral equations. Rend. Circ. Mat. Palermo (2). (2022), 1-13. https://doi.org/10.1007/s12215-022-00770-7

13 [21] A. Salim, M. Benchohra, J. R. Graef and J. E. Lazreg, Initial value problem for hybrid y-Hilfer fractional implicit

14 differential equations. J. Fixed Point Theory Appl. 24 (2022), 14 pp. https://doi.org/10.1007/s11784-021-00920-x

5 [22] A. Salim, M. Benchohra, E. Karapinar, J. E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type

— fractional differential equations. Adv. Difference Equ. 2020, 601 (2020).

6 [23] A. Salim, M. Benchohra , J. E. Lazreg and G. N’Guérékata, Boundary value problem for nonlinear implicit generalized

17 Hilfer-type fractional differential equations with impulses. Abstr. Appl. Anal. 2021 (2021), 17pp.

18 [24] A. Salim, J. E. Lazreg, B. Ahmad, M. Benchohra and J. J. Nieto, A study on k-generalized y-Hilfer derivative operator,

19 Vietnam J. Math. (2022). https://doi.org/10.1007/s10013-022-00561-8

oo [25] S. Toprakseven, Solvability of fractional boundary value problems for a combined Caputo derivative, Konuralp J. Math.

o1 9 (2022), 119-126.

— [26] T. M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.

22 [27] I. Rus, Ulam stability of ordinary differential equations in a Banach space, Carpathian J. Math. 26 (2011), 103-107.

23 28] D.R. Smart, Fixed point theory, Combridge Uni. Press, Combridge, 1974.

24 [29] S. M. Ulam. A collection of mathematical problems. Interscience Publishers, New York, 1968.

o5 [30] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.

20 LABORATORY OF MATHEMATICS, DJILLALI LIABES UNIVERSITY OF SIDI BEL-ABBES, P.O. Box 89 SiDI BEL

2L ABBES 22000, ALGERIA

1
2
3
4
5

-
3] efe]~

—_

28 Email address: wafaa . rahou@yahoo.com

29

30 FACULTY OF TECHNOLOGY, HASSIBA BENBOUALI UNIVERSITY OF CHLEF, P.O. BOX 151 CHLEF 02000, ALGERIA
v Email address: salim.abdelkrim@yahoo.com, a.salim@Quniv-chlef.dz

32 LABORATORY OF MATHEMATICS, DJILLALI LIABES UNIVERSITY OF SIDI BEL-ABBES, P.O. Box 89 SipDI BEL

33 ABBES 22000, ALGERIA

67 Email address: lazregjamal@yahoo.fr

35 LABORATORY OF MATHEMATICS, DJILLALI LIABES UNIVERSITY OF SIDI BEL-ABBES, P.O. Box 89 SIDI BEL
36 ABBES 22000, ALGERIA
37 Email address: benchohra@yahoo.com

38

39

40

41

42

11 Feb 2023 10:54:45 PST
221111-Salim Version 2 - Submitted to Rocky Mountain J. Math.



	1. Introduction
	2. Preliminaries
	2.1. Some Fixed Point Theorems

	3. Existence Results
	4. Ulam-Hyers Stability 
	5.  Examples
	Conclusion
	Declarations
	References

