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Abstract. The Riccati equation method is used to establish a new comparison theorem
for systems of two linear �rst order ordinary di�erential equation. This result is based on
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1. Introduction. Let pj(t), qj(t), j = 1, 2 be real-valued continuous functions on
the interval [a, b]. Consider the second order linear ordinary di�erential equations

(pj(t)φ
′)′ + qj(t)φ = 0, j = 1, 2. (1.1j)

De�nition 1.1. Eq. (1.12) is called a Sturm majorant for Eq. (1.11) on [a, b] if

p1(t) ≥ p2(t) > 0 and q1(t) ≤ q2(t), t ∈ [a, b]. (1.2)

If in addition q1(t) < q2(t) or

p1(t) > p2(t) > 0 and q2(t) 6= 0

for some t ∈ [a, b], then Eq. (1.12) is called a strict Sturm majorant for Eq. (1.11) on
[a, b]. The Sturm's famous comparison theorem states (see [1], p. 334)

Theorem 1.1 (Sturm). Let (1.12) be a Sturm majorant for (1.11) and let φ =
φ1(t) 6= 0 be a solution of Eq. (1.11) having exactly n(n ≥ 1) zeroes t = t1 < t2 < ... < tn
on (t0, t

0]. Let φ = φ2(t) 6= 0 be a solution of Eq. (1.12) satisfying

p1(t)φ
′
1(t)

φ1(t)
≥ p2(t)φ

′
2(t)

φ2(t)
(1.3)

at t = t0 (the expression on the right [or left] of (1.3) is considered to be +∞ if φ2(t0) = 0
[or φ1(t0) = 0]; in particular, (1.3) holds at t = t0 if φ1(t0) = 0). Then φ2(t) has at least n
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zeroes on (t0, tn]. Furthermore φ2(t) has at least n zeroes on (t0, t
0) if either the inequality

(1.3) holds at t = t0 or (1.12) is a strict Sturm majorant for Eq. (1.11) on [t0, tn].
Note that if pj(t) 6= 0, j = 1, 2, t ∈ [a, b], then the equations (1.1j), j = 1, 2 are

equivalent (reducible) to the systems
φ′ = 1

pj(t)
ψ

ψ′ = −qj(t)φ, t ∈ [a, b].

(1.4j)

j = 1, 2. They are particular cases of more general systems
φ′ = fj(t)ψ,

ψ′ = −gj(t)φ, t ∈ [a, b],
(1.5j)

j = 1, 2, where fj(t), gj(t), j = 1, 2 are real-valued continuous functions on [a, b]. On the
other hand obviously the systems (1.5j), j = 1, 2 are reducible to the systems (1.1j), j =
1, 2 respectively if in particular fj(t) 6= 0, t ∈ [a, b], j = 1, 2. In this case we can
reformulate Theorem 1.1 for the systems (1.5j), j = 1, 2 as follows.

De�nition1.2. The system (1.52) is called a Shturm majorant for the system (1.51)
on [a, b], if

f2(t) ≥ f1(t) > 0, and g2(t) ≥ g1(t), t ∈ [a, b]. (1.6)

If in addition g2(t) > g1(t) or

f2(t) > f1(t) > 0 and g2(t) 6= 0

for some t ∈ [a, b], then the system (1.52) is called a strict Sturm majorant for the system
(1.51) on [a, b].

Theorem 1.2. Let the system (1.52) be a Sturm majorant for the system (1.51) and
let (φ1(t), ψ1(t)) be a solution of (1.51) such that φ1(t) has exactly n (n ≥ 1) zeroes
t = t1 < ... < tn on (t0, t

0]. Let (φ2(t), ψ2(t)) be a solution of (1.52) such that

ψ1(t0)

φ1(t0)
≥ ψ2(t0)

φ2(t0)
(1.7)

(the expression in the right [or left] of (1.7) is considered to be +∞, if φ2(t0) = 0 [or
φ2(t0) = 0]; in particular (1.7) holds if φ1(t0) = 0). Then φ2(t) has at least n zeroes on
(t0, tn]. Furthermore φ2(t) has at least n zeroes on (t0, t

0) if either inequality (1.7) holds
or (1.52) is a strict Sturm majorant for (1.51) on [t0, tn].
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Here arises the following question. Does Theorem 1.2 remain valid if we weaken the
conditions (1.6) up to the following ones?

f2(t) ≥ f1(t) ≥ 0 and g2(t) ≥ g1(t), t ∈ [a, b]. (1.8)

Before answering this question let us make some observations. Let p(t), q(t), r(t), P (t),
Q(t), R(t) and S(t) be real valued continuous functions on [t0,+∞) and let p(t) > 0,
t ≥ t0. Consider the general second order linear equation

(p(t)φ′)′ + q(t)φ′ + r(t)φ = 0, t ≥ t0, (1.9)

and the general linear homogeneous system of two equations
φ′ = P (t)φ+Q(t)ψ;

ψ′ = R(t)φ+ S(t)ψ, t ≥ t0.
(1.10)

The substitution p(t)φ′ = ψ in (1.9) reduces it to the system
φ′ = 1

p(t)
ψ,

ψ′ = −r(t)φ− q(t)
p(t)
ψ, t ≥ t0

, (1.11)

which is a particular case of the system (1.10), and the substitutions

φ→ φ exp

{ t∫
t0

P (τ)dτ

}
, ψ → ψ exp

{ t∫
t0

S(τ)dτ

}
, (1.12)

in (1.10) reduces it to its simpler form
φ′ = Q̃(t)ψ,

ψ′ = R̃(t)φ, t ≥ t0,

(1.13)

where Q̃(t) ≡ exp

{
t∫
t0

[
S(τ) − P (τ)

]
dτ

}
, R̃(t) ≡ exp

{
t∫
t0

[
P (τ) − S(τ)

]
dτ

}
, t ≥ t0.

Therefore Eq. (1.9) is reducible to its simpler form

(p̃(t)φ′)′ + q̃(t)φ = 0, t ≥ t0. (1.14)
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Further, for brevity, by a zero of any solution (φ(t), ψ(t)) of the system (1.10) we mean
any zero of the function φ(t).

De�nition 1.3. The system (1.10) is called oscillatory if every its solution has arbitrarily
large zeroes.

De�nition 1.4. The system (1.10) is called non-oscillatory if for its arbitrary nontrivial
solution (φ(t), ψ(t)) there exists T = Tφ,ψ ≥ t0 such that φ(t) 6= 0, t ≥ T .

Let us compare the system (1.10) with Eq. (1.9) (or, which is the same, with the
system (1.11)) from the point of view of mutual displacement and richness (the quantity
and density on any �nite interval) of zeroes of their solutions. From Theorem 1.1 it follows
that the classic de�nitions of oscillation and non-oscillation of Eq. (1.9) are equivalent to
De�nitions 1.3 and 1.4 respectively. From Theorem 1.1 it follows also that the following
statements are valid (due to mentioned above connections between equations (1.9) and
(1.14) and the systems (1.11), (1.13))
1) The system (1.11) is either oscillatory or non-oscillatory,
2) Between two arbitrary two zeroes of any nontrivial solution (φ(t), ψ(t)) of the system
(1.11) there exists at least one zero of any solution of that system, linearly independent
of (φ(t), ψ(t)).

Note that the statement 1) does not hold for the general system (1.10) (see [2]).
Therefore, there is no comparison theorem for general systems (1.10), similar to
Theorem 1.1 (otherwise the statement 1) will be true for the general system (1.10)).
The following example shows that assertion 2) is also false for the general system (1.10).

Example 1.1. Set: f(t) ≡


0, t ∈ [0, π),

sin2 t, t ∈ [π, 2π],
g(t) ≡ 1, t ∈ [0, 2π]. Consider the

system 
φ′ = f(t)ψ,

ψ′ = g(t)φ, t ∈ [0, 2π].
(1.15)

It is not di�cult to verify that for the non trivial solution (φ(t), ψ(t)) of this system with
φ(0) = 0, ψ(0) = 1 the function φ(t) is identically zero on [0, π], whereas for all solutions
(φ1(t), ψ1(t)) of this system with φ1(0) 6= 0 the function φ1(t) does not vanish on [0, π].
Therefore between two zeroes t1 = 0 and t2 = π of the solution (φ(t), ψ(t)) there is no
zero of (φ(t), ψ(t)).

Thus the statement 2) for the system (1.15) does not hold. This means that the
answer on the posed above question is negative. Moreover, this example shows that some
solutions of the general system (1.10) may have in�nitely (in the case of the system (1.15)
continuum) number of zeroes on any �nite interval, but some others only �nite ones,
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whereas it is well known that any solution of Eq. (1.9) (hence of the system (1.11)) can
have at most �nite number of zeroes on any �nite interval. However, despite this, the
posed question can be answered positively if in the formulation of Theorem 1 2 the word
"zeros" we replace by the word "zero-classes" (a concept, which is introduced in [3]
and has the property, that for every solution (φ(t), ψ(t)) of the system (1.5j) the function
φ(t) (ψ(t)) has no more than �nite numbed of null-classes on on [a, b], see below) and
the ordering symbol < is replaced by another symbol ≺, ordering the null-classes (see
below). It turns out that for any solution (φ(t), ψ(t)) of the system (1.4j), each zero-class
of the function φ(t) coincides with one of its zeros and each zero of φ(t) is its a zero-class.
Therefore, the solution of the above question with the indicated changes: "zeroes"→ "null-
classes�, < → ≺ gives a generalization of Sturm's theorem.

In this paper we use the Riccati equation method to obtain a generalization of Sturm's
comparison theorem (Theorem 1.1), which is based on the concept of "null-classes".

2. Auxiliary propositions. Along with the systems (1.5j), j = 1, 2 consider the
Riccati equations

y′ + fj(t)y
2 + gj(t) = 0, t ∈ [a, b], j = 1, 2, (2.1j)

and the di�erential inequalities

η′ + fj(t)η
2 + gj(t) ≥ 0, t ∈ [a, b], j = 1, 2. (2.2j)

Remark 2.1. Every solution of Eq. (2.12) on an interval [t1, t2) (⊂ [a, b]) is also a
solution of the inequality (2.22) on [t1, t2),

Remark 2.2. If f1(t) ≥ 0, t ∈ [t1, t2), then for every λ ∈ (−∞,+∞) the function

ηλ(t) ≡ λ−
t∫
t1

g1(τ)dτ, t ∈ [t1, r2) is a solution to the inequality (2.21) on [t1, t2).

The following comparison theorem plays a crucial role in the proof of the main result.
Theorem 2.1. Let y2(t) be a solution of Eq. (2.12) on [t0, τ0) (⊂ [a, b]) and let η1(t)

and η2(t) be solutions of the inequalities (2.21) and (2.22) respectively on [t0, τ0), moreover
suppose that y2(t0) ≤ ηj(t0), j = 1, 2. In addition let the following conditions be satis�ed

f1(t) ≥ 0, t ∈ [t0, τ0); y(0) − y2(t0) +
t∫
t0

exp

{
τ∫
t0

f1(s)(η1(s) + η2(s))ds

}[
(f2(τ) −

f1(τ))y
2
2(τ) + g2(τ) − g1(τ)

]
dτ ≥ 0, t ∈ [t0, τ0), for some y(0) ∈ [y2(t0), η1(t0)]. Then

Eq. (2.11) has a solution y1(t) with the initial condition y1(t0) ≥ y(0), on [t0, τ0); moreover
y1(t) ≥ y2(t), t ∈ [t0, τ0).

See the proof in [4].
Besides of Theorem 2.1 for the proof of the main result we need also in the following

three lemmas.
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Lemma 2.1. Let f1(t) ≥ 0, t ∈ [t0, τ0), and let (t1, t2) be the maximum existence
interval for a solution y(t) of Eq. (2.11), where t0 < t1 < t2 < τ0., Then

lim
t→t2−0

y(t) = −∞, lim
t→t1+0

= +∞. (2.3)

See the proof in [4].
Remark 2.3. The �rst equality of (2.3) remains valid also in the case when (t1, t2)

is not the maximum existence interval, but y(t) is not continuable to the right from the
point t2.

Lemma 2.2. Let f1(t) ≥ 0, t ∈ [t0, τ), and let (t1k, t2k)(⊂ [t0, τ0)) be the the maximum
existence interval for a solution yk(t) of Eq. (2.11), k = 1, 2. In addition let y1(t1) > y2(t1)
for some t1 ∈ (t11, t21) ∩ (t12, t22). Then t11 > t12 and t21 > t22.

See the proof in [4].
Lemma 2.3. Let f1(t) ≥ 0, t ∈ [t0, τ0), let y0(t) be a solution of Eq. (2.11) on [t0, τ0),

and let η0(t) be a solution of the inequality (2.21) on [t0, τ0); moreover let y0(t0) ≤ η0(t0).
Then y0(t) ≤ η0(t), t ∈ [t0, τ0).

See the proof in [4].
3. Main result. On the set 2R of subsets of real numbers R de�ne the order relation

≺, assuming x ≺ y if and only if for every tx ∈ x ∈ 2R, ty ∈ y ∈ 2R the inequality
tx < ty is valid. Let (φ(t), ψ(t)) be a nontrivial solution of the system (1.51). Since φ(t) is
a continuous function on [a, b] thats zeroes form a closed set.

De�nition 3.1. A connected component of zeroes of the function φ(t) of a solution
(φ(t), ψ(t)) of the system (1.51) is called a null-element of φ(t).

Let z(t) be a solution of Eq. (2.11) with z(a) = i. Then z(t) exists on [a, b] and
y(t) ≡ Im z(t) > 0, t ∈ [a, b] and

φ(t) =
µ√
y(t)

sin

( t∫
a

f1(τ)y(τ)dτ + θ

)
, t ∈ [a, b], (3.1)

where µ and θ are some real constants (see [3]). Let n(φ) be a null-element of the function
φ(t). By (3.1)

t∫
a

f1(τ)y(τ)dτ + θ = πk0, t ∈ N(φ), k0 ∈ Z. (3.2)

Hereafter by [t1, t2] we mean the set of all points of R lying between t1 and t2, including
themselves.
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De�nition 3.2. Null-elements N1(φ) and N2(φ) of the function φ(t) are called congene-

rous, if for every tj ∈ N(φ), j = 1, 2 the inequality∣∣∣∣
t∫

t1

f1(τ)y(τ)dτ

∣∣∣∣ < π, t ∈ [t1, t2]

is valid.
It was shown in [3] that the congeniality relation between null-elements N1(φ) and

N2(φ) is an equivalence relation.
De�nition 3.3. An equivalence class of congenerous null-elements N(φ) of the function

of a solution (φ(t), ψ(t)) of the system (1.51) is called a null-class of φ(t).
Remark 3.1. It follows from (3.1) and (3.2) that if f1(t) ≥ 0, t ∈ [a, b], then every

null-class consists of only one null-element.
It was shown in [3] that for every solution (φ(t), ψ(t)) of the system (1.51) the function

φ(t) has a �nite number of null-classes, and these null-classes are linearly ordered by ≺.
Let (φj(t), ψj(t)) be a solution of the system (1.5j), j = 1, 2, and letN1(φ2) = [t1, τ1] ≺

N2(φ2) = [t2, τ2] ≺ ... ≺ Nn(φ2) = [tn, τn] be all of the null-classes of the function φ2(t) on
[t0, t

0], t0 ∈ (t0, τ0).
De�nition 3.4. The quarter (φ1, ψ1, f1, g1) is called a majorant of the quarter

(φ2, ψ2, f2, g2) on [t0, t
0] if the following conditions are satis�ed

1. ψ1(t0)/φ1(t0) ≤ ψ2(t0)/φ2(t0) (The expression on the left hand [respectively on the
right hand] side of the inequality is considered to be equal +∞ if φ1(t0) = 0 [respectively,
if φ2(t0) = 0] in particular this is in the case if φ2(t0) = 0);

2. f1(t) ≥ f2(t) ≥ 0, t ∈ [t0, t
0];

3. there exists ξk ∈ (τk, tk+1) (k = 0, ..., n− 1) such that
(31) g1(t) ≥ g2(t), t ∈ [τk, ξk] (k = 0, ..., n− 1)
(32) any solutions ηjk(t) of the inequalities (2.1j) (j = 1, 2) on [ξk, tk+1] such that

ηjk(ξk) > ψ2(ξk)/φ2(ξk) (such solutions always exist by condition 2 and Remark 2.2)
satisfy the inequalities

t∫
ξk

exp

{ τ∫
ξk

f2(s)
[
η1,k(s)+η2,k(s)

]
ds

}[
g1(τ)−g2(τ)

]
dτ ≥ 0, t ∈ [ξk, tk+1], k = 0, ..., n−1.

In addition, suppose that f2(t) > 0, t ∈ [t0, t
0] and either the strict inequality takes place

in condition 1 or at least one of the following conditions is satis�ed:
1'. f1(t

′) > f2(t
′) and g1(t

′) 6= 0 for some t′ ∈ [t0, t
0],
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2'. g1(t
′) > g2(t

′) for some t′ ∈
n−1⋃
k=1

[τk, ξk],

3'.
tk+1∫
ξk

exp

{
τ∫
ξk

f2(s)
[
η1k(s)+η2k(s)

]
ds

}[
g1(τ)−g2(τ)

]
dτ > 0 for some k ∈ {0, ..., n−1}.

Then the quarter (φ1, ψ1, f1, g1) is called a strict majorant of the quarter (φ2, ψ2, f2, g2)
on [t0, t

0].
Theorem 3.1 (main result). Let (φ2(t), ψ2(t)) be a solution of the system (1.52),

let N1(φ2) = [t1, τ1] ≺ ... ≺ Nn(φ2) = [tn, τn] be all of the null-classes of φ2(t) on [t0, t
0]

(t0 ∈ (t0, τ0)) and let (φ1(t), ψ1(t)) be a solution of the system (1.51). If (φ1, ψ1, f1, g1) is
a majorant for (φ2, ψ2, f2, g2) on [t0, t

0], then the function φ1(t) has at least one null-class
in (τk, τk+1] for each k = 0, ..., n− 1. In addition, if (φ1, ψ1, f1, g1) is a strict majorant for
(φ2, ψ2, f2, g2) on [t0, t

0], then the function φ1(t) has at least n null-classes on (t0, t
0).

Proof. Suppose that the function φ1(t) has no zeroes on [τk0 , tk0+1] for some k0.
Then the function ψ1(t)/φ1(t) exists on (τk0 , τ̃k0+1], foe some τ̃k0+1 > tk0+1 and is a

solution of Eq. (2.11) there. At �rst consider the case when k0 6= 0. In this case (τk0 , tk0+1)
is the maximal existence interval for the solution y1(t) ≡ ψ2(t)/φ2(t) of Eq. (2.12). Let
ηj,k0(t) (j = 1, 2) be solutions of the respective inequalities (2.2j) on [ξk0 , tk0+1] with the
initial conditions ηj,k0(ξk0) > y2(ξk0), j = 1, 2 (in virtue of condition 1 and Remark 2.2
these solutions exist always). Let ỹ2(t) be a solution of Eq. (2.12) such that y2(ξk0) <
ỹ2(ξk0) ≤ min

j=1,2
{ηj,k0(ξk0)} and let (t̃k0 , t̃k0+1) be the maximum existence interval for ỹ2(t).

By Lemma 2.2 it follows from the inequality y2(ξk0) < ỹ2(ξk0) that τk0 < t̃k0 and tk0+1 <
t̃k0+1. We assume that ỹ2(ξk0) is close enough to y2(ξk0) to ensure that t̃k0 ∈ (tk0 , ξk0) and
t̃k0+1 ∈ (tk0 , τ̃k0+1). Since t̃k0 is the left endpoint of the maximum existence interval of
ỹ2(t) by Lemma 2.1 we have ỹ2(t̃k0 + 0) = +∞ and since ỹ2(t̃k0) < +∞ [because of the
inclusion t̃k0 ∈ (τk0 , ξk0 ]] we have

y1(ζk0) ≤ ỹ2(ζk0), (3.5)

for some ζk0 ∈ (t̃k0 , ξk0). Let (φ1, ψ1, f1, g1) be a majorant for (φ2, ψ2, f2, g2). Then by
virtue of Theorem 2.1 it follows from (3.5) that

y1(ξk0) ≤ ỹ2(ξk0) (3.6)

and since ỹ2(ξk0) ≤ min
j=1,2
{ηj,k0(ξk0)}, we have

y1(ξk0) ≤ η1,k0(ξk0), ỹ2(ξk0) ≤ η2,k0(ξk0).

By Lemma 2.3 from here it follows that

y1(t) ≤ η1,k0(t), ỹ2(t) ≤ η2,k0(t) t ∈ [ξk0 , t̃k0+1).
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Therefore ỹ2(t̃k0+1−0) ≥ y1(t̃k0+1) > −∞. Then by virtue of Lemma 2.1 (t̃k0 , t̃k0+1) is not
the maximum existence interval for ỹ2(t). The obtained contradiction shows that φ1(t) has
at least one zero l0 on (τk0 , tk0=1], which belongs to a null-element of the function φ1(t).
Hence, according to Remark 3.1 l0 belongs to a null-class N(φ1) of the function φ1(t). By
(3.1) from condition 2 it follows that if N(φ1)∩Nk0(φ2) 6= ∅. Then N(φ1) ⊂ Nk0(φ2), and,
therefore, N(φ1) ⊂ (τk0 , τk0+1]. Now consider the case when k0 = 0. If φ2(t0) = 0, then the
existence of a null-class of φ1(t) in (t0, t1] can be proved by analogy with the proof in the
preceding case. Suppose φ2(t0) 6= 0. Then by condition 1 we have also φ1(t0) 6= 0. Show
that φ1(t) has at least one zero on (t0, t1]. Suppose φ1(t) 6= 0, t ∈ (t0, t1]. Then y1(t) ≡
ψ1(t)/φ1(t) is de�ned at least on [t0, t1] and is a solution of Eq. (2.11) on that interval. The
function y2(t) ≡ ψ2(t)/φ2(t) is a solution of Eq. (2.12) on [t0, t1), in virtue of Remark 2.3
y2(t1 − 0) = −∞. But on the other hand since y2(t0) ≥ y1(t0) and (φ1, ψ1, f1, g1) is a
majorant for (φ2, ψ2, f2, g2) it follows from Theorem 2.1 that y2(t1 − 0) ≥ y1(t1) > −∞.
The obtained contradiction shows that φ1(t) has at least one zero on (t0, t1]. Then φ1(t)
has at least one null-class in [t0, τ1]. The �rst part of the theorem is proved. The second
(last) part of the theorem can be proved by analogy of the proof of the second part of
Theorem 4.1 from [3], as far as the strict majorant condition implies the reducibility of
the systems (1.5j), j = 1, 2 to the second order linear ordinary di�erential equations like
(1.1j), j = 1, 2 respectively. The theorem is proved.

De�nition 3.5. The system (1.51) is called a majorant of the system (1.52) on [t0, t
0]

(⊂ [a, b]) if the following conditions are satis�ed
1.) f1(t) ≥ f2(t) ≥ 0, t ∈ [t0, t

0],
2). g1(t) ≥ g2(t), t ∈ [t0, t

0].
In addition suppose that f2(t) > 0, t ∈ [t0, t

0] and at least one of the following
conditions is satis�ed

1') f1(t
′) > f2(t

′) and g1(t
′) 6= 0 for some t′ ∈ [t0, t

0];
2') g1(t

′) > g2(t
′) for some t′ ∈ [t0, t

0].
Then the system (1.51) is called a strict majorant of the system (1.52).
From Theorem 3.1 we immediately get.
Corollary 3.1. Let the system (1.51) be a majorant for the system (1.52). Let

(φ2(t), ψ2(t)) be a nontrivial solution of the system (1.52) and let φ2(t) have exactly n(≥ 1)
null-classes N1(φ2) ≺ ... ≺ Nn(φ2) on [t0, t

0]. Let (φ1(t), ψ1(t)) be a nontrivial solution of
the system (1.51) satisfying

ψ2(t0)

φ2(t0)
≥ ψ1(t0)

φ1(t0)
(3.7)

(The expression on the right [or left] of (3.7) is considered to be +∞, if φ1(t0) = 0 [or
φ2(t0) = 0]; in particular, (3.7) holds if φ2(t0) = 0). Then φ1(t) has at least n null-classes
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in (t0, tn), where Nn(φ2) = [tn, τn], if either the strict inequality (3.7) holds or (1.51) is a
strict majorant for (1.52) on [t0, tn].

�
Remark 3.2. Corollary 3.1 is a generalization of Theorem 1.1.
Remark 3.3. It may happen that the null classes of the components φ(t) of the

solutions (φ(t), ψ(t)) of the systems (1.5k), k = 1, 2 consist of only one element (one
point). This can happen, for example, in the case when the functions fk(t), k = 1, 2 have
only �nite number of zeroes on [t0, t

0]. For this case Corollary 3.1 provides satis�ability of
Theorem 1.2 wit replacement (1.6) by (1.8), i. e. Theorem 1.2 with mentioned replacement
remains valid under the mild additional restriction that the solutions of the systems
(1.5k), k = 1, 2 have no more than �nite number of zeroes on [t0, t

0].
De�nition 3.6. The system (1.10) is called strict oscillatory if for every its nontrivial

solution (φ(t), ψ(t)) the function φ(t) has in�nite number of null-classes, otherwise it is
called strict non-0scillatory.

Due to the connection (1.12) between the system (1.10) with the system (1.13) from
Theorem 3.1 we obtain immediately the following generalization of statement 1).

Corollary 3.2. Assume Q(t) does not change sign on [T,+∞) for some T ≥ t0. Then
the system (1.10) is either strict oscillatory or strict non-oscillatory.

Remark 3.4. From the strict oscillation (strict non-oscillation) of the system (1.10)
it follows its oscillation (non-oscillation), but the opposite is not true (see [3]).

References

1. Ph. Hartman, Ordinary di�erential equations, SIAM - Society for industrial and
applied Mathematics, Classics in Applied Mathematics 38, Philadelphia 2002.

2. G. A. Grigorian, The behavior of solutions of the system of two �rst order linear
ordinary di�erential equations. Part I. Math. Pannon. 26 (2017/18), no. 1, 67�101.

3. G. A. Grigorian. Oscillatory criteria for the systems of two �rst - order Linear
ordinary di�erential equations. Rocky Mount. J. Math., vol. 47,

Num. 5, 2017, pp. 1497 - 1524
4. G. A. Grigorian, On two comparison tests for second-order linear ordinary

di�erential equations (Russian) Di�er. Uravn. 47 (2011), no. 9, 1225 - 1240; trans-
lation in Di�er. Equ. 47 (2011), no. 9 1237 - 1252, 34C10.

10

27 Jul 2022 01:53:33 PDT
211125-Grigorian Version 2 - Submitted to Rocky Mountain J. Math.


