Open Access
January, 2011 Global existence for the primitive equations with small anisotropic viscosity
Frédéric Charve , Van-Sang Ngo
Rev. Mat. Iberoamericana 27(1): 1-38 (January, 2011).


In this paper, we consider the primitive equations with zero vertical viscosity, zero vertical thermal diffusivity, and the horizontal viscosity and horizontal thermal diffusivity of size $\varepsilon^\alpha$ where $0 < \alpha < \alpha_0$. We prove the global existence of a unique strong solution for large data provided that the Rossby number is small enough (the rotation and the vertical stratification are large).


Download Citation

Frédéric Charve . Van-Sang Ngo . "Global existence for the primitive equations with small anisotropic viscosity." Rev. Mat. Iberoamericana 27 (1) 1 - 38, January, 2011.


Published: January, 2011
First available in Project Euclid: 4 February 2011

zbMATH: 1228.35175
MathSciNet: MR2815731

Primary: 35Q35 , 35S30 , 76D05 , 76U05

Keywords: Anisotropy , dispersion , primitive equations , quasi-geostrophic system , Strichartz estimates

Rights: Copyright © 2011 Departamento de Matemáticas, Universidad Autónoma de Madrid

Vol.27 • No. 1 • January, 2011
Back to Top