Open Access
April, 2008 Transformations between surfaces in $\mathbb{R}^4$ with flat normal and/or tangent bundles
Angel Montesinos-Amilibia
Rev. Mat. Iberoamericana 24(1): 71-90 (April, 2008).

Abstract

We exhibit several transformations of surfaces $M$ in $\mathbb{R}^4$: a transformation of flat surfaces that gives surfaces with flat normal bundle (semiumbilical surfaces); and its inverse that from a semiumbilical surface obtains a flat surface; then a one-parameter family of transformations $f$ on flat semiumbilical immersed surfaces (FSIS), such that $df(T_pM)$ is totally orthogonal to $T_pM,$ and that give FSIS. This family satisfies a Bianchi type of permutability property.

Citation

Download Citation

Angel Montesinos-Amilibia . "Transformations between surfaces in $\mathbb{R}^4$ with flat normal and/or tangent bundles." Rev. Mat. Iberoamericana 24 (1) 71 - 90, April, 2008.

Information

Published: April, 2008
First available in Project Euclid: 16 July 2008

zbMATH: 1147.53009
MathSciNet: MR2435967

Subjects:
Primary: 53A05

Keywords: Bäcklund transformation , Bianchi permutability , evolute , flat, semiumbilical surfaces in $\mathbb{R}^4$

Rights: Copyright © 2008 Departamento de Matemáticas, Universidad Autónoma de Madrid

Vol.24 • No. 1 • April, 2008
Back to Top