Abstract
We use Lurie’s symmetric monoidal envelope functor to give two new descriptions of -operads: as certain symmetric monoidal -categories whose underlying symmetric monoidal -groupoids are free, and as certain symmetric monoidal -categories equipped with a symmetric monoidal functor to finite sets (with disjoint union as tensor product). The latter leads to a third description of -operads, as a localization of a presheaf -category, and we use this to give a simple proof of the equivalence between Lurie’s and Barwick’s models for -operads.
Funding Statement
J. K. gratefully acknowledges support from grants MTM2016-80439-P (AEI/FEDER, UE) and PID2020-116481GB-I00 of Spain and 2017-SGR-1725 of Catalonia, and was also supported through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D grant number CEX2020-001084-M.
Citation
Rune Haugseng. Joachim Kock. "-OPERADS AS SYMMETRIC MONOIDAL -CATEGORIES." Publ. Mat. 68 (1) 111 - 137, 2024. https://doi.org/10.5565/PUBLMAT6812406
Information