Abstract
We inspect the BNSR-invariants $\Sigma^m(P_n)$ of the pure braid groups $P_n$, using Morse theory. The BNS-invariants $\Sigma^1(P_n)$ were previously computed by Koban, McCammond, and Meier. We prove that for any $3\!\le\! m\!\le\! n$, the inclusion $\Sigma^{m-2}(P_n)\subseteq \Sigma^{m-3}(P_n)$ is proper, but $\Sigma^\infty(P_n)=\Sigma^{n-2}(P_n)$. We write down explicit character classes in each relevant $\Sigma^{m-3}(P_n)\setminus \Sigma^{m-2}(P_n)$. In particular we get examples of normal subgroups $N\le P_n$ with $P_n/N\cong\mathbb{Z}$ such that $N$ is of type $\mathrm{F}_{m-3}$ but not $\mathrm{F}_{m-2}$, for all $3\le m\le n$.
Citation
Matthew C. B. Zaremsky. "Separation in the BNSR-Invariants of the Pure Braid Groups." Publ. Mat. 61 (2) 337 - 362, 2017. https://doi.org/10.5565/PUBLMAT6121702
Information