Open Access
December 2022 Non-left-orderability of cyclic branched covers of pretzel knots $P(3,-3,-2k-1)$
Lin Li, Zipei Nie
Proc. Japan Acad. Ser. A Math. Sci. 98(10): 91-94 (December 2022). DOI: 10.3792/pjaa.98.017

Abstract

We prove the non-left-orderability of the fundamental group of the $n$-th fold cyclic branched cover of the pretzel knot $P(3,-3,-2k-1)$ for all integers $k$ and $n\geq 1$. These 3-manifolds are $L$-spaces discovered by Issa and Turner.

Citation

Download Citation

Lin Li. Zipei Nie. "Non-left-orderability of cyclic branched covers of pretzel knots $P(3,-3,-2k-1)$." Proc. Japan Acad. Ser. A Math. Sci. 98 (10) 91 - 94, December 2022. https://doi.org/10.3792/pjaa.98.017

Information

Published: December 2022
First available in Project Euclid: 30 November 2022

MathSciNet: MR4593205
zbMATH: 1506.57010
Digital Object Identifier: 10.3792/pjaa.98.017

Subjects:
Primary: 57M05 , 57M12

Keywords: Branched cover , non-left-orderable group , pretzel knot

Rights: Copyright © 2022 The Japan Academy

Vol.98 • No. 10 • December 2022
Back to Top