Abstract
We show that the fundamental group of the 3-manifold obtained by $\frac{p}{q}$-surgery along the $(n-2)$-twisted $(3,3m+2)$-torus knot, with $n,m \ge 1$, is not left-orderable if $\frac{p}{q} \ge 2n + 6m-3$ and is left-orderable if $\frac{p}{q}$ is sufficiently close to 0.
Citation
Anh Tuan Tran. "Left-orderability for surgeries on twisted torus knots." Proc. Japan Acad. Ser. A Math. Sci. 95 (1) 6 - 10, January 2019. https://doi.org/10.3792/pjaa.95.6
Information