Open Access
Translator Disclaimer
May 2016 A characterization of the $L^{\infty}$-representation algebra $\mathfrak{R}(S)$ of a foundation semigroup and its application to BSE algebras
Zeinab Kamali
Proc. Japan Acad. Ser. A Math. Sci. 92(5): 59-63 (May 2016). DOI: 10.3792/pjaa.92.59

Abstract

For a locally compact Hausdorff semigroup $S$, the $L^{\infty}$-representation algebra $\mathfrak{R}(S)$ was extensively studied by Dunkl and Ramirez. In this paper we give a characterization of the Banach algebra $\mathfrak{R}(S)$ of a foundation semigroup $S$ and as an application we determine some BSE semigroup algerbras.

Citation

Download Citation

Zeinab Kamali. "A characterization of the $L^{\infty}$-representation algebra $\mathfrak{R}(S)$ of a foundation semigroup and its application to BSE algebras." Proc. Japan Acad. Ser. A Math. Sci. 92 (5) 59 - 63, May 2016. https://doi.org/10.3792/pjaa.92.59

Information

Published: May 2016
First available in Project Euclid: 28 April 2016

zbMATH: 1376.46038
MathSciNet: MR3492813
Digital Object Identifier: 10.3792/pjaa.92.59

Subjects:
Primary: 46Jxx
Secondary: 22A20

Keywords: BSE algebra , foundation semigroup , reflexive semigroup , Representation algebra

Rights: Copyright © 2016 The Japan Academy

JOURNAL ARTICLE
5 PAGES


SHARE
Vol.92 • No. 5 • May 2016
Back to Top