Open Access
January 2016 Real abelian fields satisfying the Hilbert-Speiser condition for some small primes $p$
Humio Ichimura
Proc. Japan Acad. Ser. A Math. Sci. 92(1): 19-22 (January 2016). DOI: 10.3792/pjaa.92.19

Abstract

For a prime number $p$, we say that a number field $F$ satisfies the Hilbert-Speiser condition $(H_{p})$ if each tame cyclic extension $N/F$ of degree $p$ has a normal integral basis. In this note, we determine the real abelian number fields satisfying $(H_{p})$ for odd prime numbers $p$ with $h(\mathbf{Q}(\sqrt{-p}))=1$.

Citation

Download Citation

Humio Ichimura. "Real abelian fields satisfying the Hilbert-Speiser condition for some small primes $p$." Proc. Japan Acad. Ser. A Math. Sci. 92 (1) 19 - 22, January 2016. https://doi.org/10.3792/pjaa.92.19

Information

Published: January 2016
First available in Project Euclid: 28 December 2015

zbMATH: 06586130
MathSciNet: MR3447745
Digital Object Identifier: 10.3792/pjaa.92.19

Subjects:
Primary: 11R18 , 11R33

Keywords: Hilbert-Speiser number fields , real abelian fields

Rights: Copyright © 2016 The Japan Academy

Vol.92 • No. 1 • January 2016
Back to Top