Open Access
Translator Disclaimer
October 2011 On the divisibility of the class number of imaginary quadratic fields
Katsumasa Ishii
Proc. Japan Acad. Ser. A Math. Sci. 87(8): 142-143 (October 2011). DOI: 10.3792/pjaa.87.142

Abstract

Let $U$ be an integer with $U>1$. If $n$ is even with $n\geq 6$, then the class number of $\mathbf{Q}(\sqrt{1-4U^{n}})$ is divisible by $n$ except $(U,n)=(13,8)$.

Citation

Download Citation

Katsumasa Ishii. "On the divisibility of the class number of imaginary quadratic fields." Proc. Japan Acad. Ser. A Math. Sci. 87 (8) 142 - 143, October 2011. https://doi.org/10.3792/pjaa.87.142

Information

Published: October 2011
First available in Project Euclid: 3 October 2011

zbMATH: 1262.11093
MathSciNet: MR2843095
Digital Object Identifier: 10.3792/pjaa.87.142

Subjects:
Primary: 11R11

Keywords: Class number , divisibility , imaginary quadratic field

Rights: Copyright © 2011 The Japan Academy

JOURNAL ARTICLE
2 PAGES


SHARE
Vol.87 • No. 8 • October 2011
Back to Top