Open Access
March 2010 A family of integral inequalities on the circle S1
Abdellatif Bentaleb, Said Fahlaoui
Proc. Japan Acad. Ser. A Math. Sci. 86(3): 55-59 (March 2010). DOI: 10.3792/pjaa.86.55

Abstract

We consider the Chebychev semigroup defined on the interval $\left [-1,+1\right ]$ by its Dirichlet form ${\int _{-1}^{+1}}(1-x^2)f^{\prime 2}(x)\, {\frac {dx}{ \pi \sqrt {1-x^2}}}$. We prove, via a method involving probabilistic techniques, a family of inequalities which interpolate between the Sobolev and Poincaré inequalities.

Citation

Download Citation

Abdellatif Bentaleb. Said Fahlaoui. "A family of integral inequalities on the circle S1." Proc. Japan Acad. Ser. A Math. Sci. 86 (3) 55 - 59, March 2010. https://doi.org/10.3792/pjaa.86.55

Information

Published: March 2010
First available in Project Euclid: 3 March 2010

zbMATH: 1204.47046
MathSciNet: MR2641798
Digital Object Identifier: 10.3792/pjaa.86.55

Subjects:
Primary: 42A99
Secondary: 46E35

Keywords: Chebychev semigroup , Logarithmic Sobolev inequality , Poincaré inequality , Sobolev inequality , spectral gap

Rights: Copyright © 2010 The Japan Academy

Vol.86 • No. 3 • March 2010
Back to Top