Open Access
November 2008 Extension of the Beurling’s Theorem
Esmaiel Hesameddini, Bahmann Yousefi
Proc. Japan Acad. Ser. A Math. Sci. 84(9): 167-169 (November 2008). DOI: 10.3792/pjaa.84.167


Under some conditions on a Hilbert space $H$ of analytic functions on the open unit disc we will show that for every nontrivial invariant subspace $\mathcal{M}$ of $H$, there exists a unique nonconstant inner function $\varphi$ such that $\mathcal{M}=\varphi H$. This extends the Beurling’s Theorem.


Download Citation

Esmaiel Hesameddini. Bahmann Yousefi. "Extension of the Beurling’s Theorem." Proc. Japan Acad. Ser. A Math. Sci. 84 (9) 167 - 169, November 2008.


Published: November 2008
First available in Project Euclid: 31 October 2008

zbMATH: 1155.47012
MathSciNet: MR2483601
Digital Object Identifier: 10.3792/pjaa.84.167

Primary: 47A25 , 47B37

Keywords: inner functions , invariant subspaces , multipliers , reproducing kernels

Rights: Copyright © 2008 The Japan Academy

Vol.84 • No. 9 • November 2008
Back to Top