Open Access
March 2007 Hartogs-Osgood theorem for separately harmonic functions
Sachiko Hamano
Proc. Japan Acad. Ser. A Math. Sci. 83(2): 16-18 (March 2007). DOI: 10.3792/pjaa.83.16

Abstract

Let $h$ be a separately harmonic function on an open neighborhood of a $(m-1)$-dimensional compact submanifold $\Sigma$ in R$^m$ with $m\geq 2$. We show that $h$ can be extended to a separately harmonic function on the bounded component of R$^m-\Sigma$.

Citation

Download Citation

Sachiko Hamano. "Hartogs-Osgood theorem for separately harmonic functions." Proc. Japan Acad. Ser. A Math. Sci. 83 (2) 16 - 18, March 2007. https://doi.org/10.3792/pjaa.83.16

Information

Published: March 2007
First available in Project Euclid: 5 March 2007

zbMATH: 1129.31002
MathSciNet: MR2303624
Digital Object Identifier: 10.3792/pjaa.83.16

Subjects:
Primary: 31C05 , 33E99

Keywords: potential theory , Separately harmonic

Rights: Copyright © 2007 The Japan Academy

Vol.83 • No. 2 • March 2007
Back to Top