Open Access
March 2005 The best constant of Sobolev inequality in an $n$ dimensional Euclidean space
Yoshinori Kametaka, Atsushi Nagai, Kohtaro Watanabe
Proc. Japan Acad. Ser. A Math. Sci. 81(3): 57-60 (March 2005). DOI: 10.3792/pjaa.81.57

Abstract

The best constant of Sobolev inequality in an $n$ dimensional Euclidean space is found by means of the theory of reproducing kernel and Green function. The concrete form of the best constant is also found in the case of Sobolev space $W^2(\mathbf{R}^n)$ ($n=2,3$).

Citation

Download Citation

Yoshinori Kametaka. Atsushi Nagai. Kohtaro Watanabe. "The best constant of Sobolev inequality in an $n$ dimensional Euclidean space." Proc. Japan Acad. Ser. A Math. Sci. 81 (3) 57 - 60, March 2005. https://doi.org/10.3792/pjaa.81.57

Information

Published: March 2005
First available in Project Euclid: 18 May 2005

zbMATH: 1100.46021
MathSciNet: MR2128933
Digital Object Identifier: 10.3792/pjaa.81.57

Subjects:
Primary: 46E22 , 46E35

Keywords: best constant , Green function , reproducing kernel , Sobolev inequality

Rights: Copyright © 2005 The Japan Academy

Vol.81 • No. 3 • March 2005
Back to Top