Open Access
Oct. 2003 On a certain invariant for real quadratic fields
Seok-Min Lee, Takashi Ono
Proc. Japan Acad. Ser. A Math. Sci. 79(8): 119-122 (Oct. 2003). DOI: 10.3792/pjaa.79.119

Abstract

Let $K = \mathbf{Q}(\sqrt{m})$ be a real quadratic field, $\mathcal{O}_K$ its ring of integers and $G = \operatorname{Gal}(K/\mathbf{Q})$. For $\gamma \in H^1(G, \mathcal{O}_K^{\times})$, we associate a module $M_c/P_c$ for $\gamma = [c]$. It is known that $M_c/P_c \approx \mathbf{Z}/\Delta_m \mathbf{Z}$ where $\Delta_m = 1$ or 2 and we will determine $\Delta_m$.

Citation

Download Citation

Seok-Min Lee. Takashi Ono. "On a certain invariant for real quadratic fields." Proc. Japan Acad. Ser. A Math. Sci. 79 (8) 119 - 122, Oct. 2003. https://doi.org/10.3792/pjaa.79.119

Information

Published: Oct. 2003
First available in Project Euclid: 18 May 2005

zbMATH: 1161.11392
MathSciNet: MR2013090
Digital Object Identifier: 10.3792/pjaa.79.119

Subjects:
Primary: 11A55 , 11R11
Secondary: 11A07

Keywords: continued fractions , fundamental unit , parity , real quadratic field

Rights: Copyright © 2003 The Japan Academy

Vol.79 • No. 8 • Oct. 2003
Back to Top