Open Access
Dec. 2001 Some remarks on the diophantine equation $(x^2 - 1)(y^2 - 1) = (z^2 - 1)^2$
Mohammed Al-Kadhi, Omar Kihel
Proc. Japan Acad. Ser. A Math. Sci. 77(10): 155-156 (Dec. 2001). DOI: 10.3792/pjaa.77.155

Abstract

In this paper, among other results, we prove that the title equation has finitely many solutions when $x - y = lz$ and $l$ is a fixed integer $\ne 2$. Moreover, all solutions $(x, y, z)$ satisfy $l < z < l^2 / 2$, $1 < y < l^2 / 2$ and $l^2+1 < x < (l^3 + l^2) / 2$. As a consequence, we extend a result of Cao.

Citation

Download Citation

Mohammed Al-Kadhi. Omar Kihel. "Some remarks on the diophantine equation $(x^2 - 1)(y^2 - 1) = (z^2 - 1)^2$." Proc. Japan Acad. Ser. A Math. Sci. 77 (10) 155 - 156, Dec. 2001. https://doi.org/10.3792/pjaa.77.155

Information

Published: Dec. 2001
First available in Project Euclid: 23 May 2006

zbMATH: 1039.11011
MathSciNet: MR1873734
Digital Object Identifier: 10.3792/pjaa.77.155

Subjects:
Primary: 11D09 , 11D25

Keywords: Diophantine equation

Rights: Copyright © 2001 The Japan Academy

Vol.77 • No. 10 • Dec. 2001
Back to Top