Open Access
Dec. 2001 Note on distribution of units of real quadratic number fields
Norisato Kataoka
Proc. Japan Acad. Ser. A Math. Sci. 77(10): 161-163 (Dec. 2001). DOI: 10.3792/pjaa.77.161

Abstract

Let $k$ be a real quadratic number field and $\mathfrak{o}_k$, $E$ the ring of integers and the group of units in $k$. Denote by $E_{\mathfrak{p}}$ a subgroup represented by $E$ of $(\mathfrak{o}_k / \mathfrak{p})^{\times}$ for a prime ideal $\mathfrak{p}$ in $k$. We report that for a given positive integer $a$, the set of prime ideals of degree 1 for which the residual index of $E_{\mathfrak{p}}$ is equal to $a$ has a density under the Generalized Riemann Hypothesis.

Citation

Download Citation

Norisato Kataoka. "Note on distribution of units of real quadratic number fields." Proc. Japan Acad. Ser. A Math. Sci. 77 (10) 161 - 163, Dec. 2001. https://doi.org/10.3792/pjaa.77.161

Information

Published: Dec. 2001
First available in Project Euclid: 23 May 2006

zbMATH: 1002.11075
MathSciNet: MR1873736
Digital Object Identifier: 10.3792/pjaa.77.161

Subjects:
Primary: 11R45

Keywords: Density , number theory , quadratic field

Rights: Copyright © 2001 The Japan Academy

Vol.77 • No. 10 • Dec. 2001
Back to Top