Open Access
Nov. 2000 Global existence of solutions to the Proudman-Johnson equation
Xinfu Chen, Hisashi Okamoto
Proc. Japan Acad. Ser. A Math. Sci. 76(9): 149-152 (Nov. 2000). DOI: 10.3792/pjaa.76.149

Abstract

We show that there is no blow-up solutions, for positive viscosity constant $\nu$, to the equation $f_{xxt} - \nu f_{xxxx} + f f_{xxx} - f_xf_{xx} =0$, $x \in (0,1)$, $t > 0$ with (i) periodic boundary condition, or (ii) Dirichlet boundary condition $f = f_x = 0$ or (iii) Neumann boundary condition $f = f_{xx} = 0$ on the boundary $x = 0, 1$. Furthermore we show that every solution decays to the trivial steady state as $t$ goes to infinity.

Citation

Download Citation

Xinfu Chen. Hisashi Okamoto. "Global existence of solutions to the Proudman-Johnson equation." Proc. Japan Acad. Ser. A Math. Sci. 76 (9) 149 - 152, Nov. 2000. https://doi.org/10.3792/pjaa.76.149

Information

Published: Nov. 2000
First available in Project Euclid: 23 May 2006

zbMATH: 0966.35002
MathSciNet: MR1801677
Digital Object Identifier: 10.3792/pjaa.76.149

Subjects:
Primary: 35K55 , 35Q30 , 76D03

Keywords: global existence , Proudman-Johnson equation

Rights: Copyright © 2000 The Japan Academy

Vol.76 • No. 9 • Nov. 2000
Back to Top