Abstract
Let $p$ be an odd prime number. We show that the Iwasawa invariants of a certain non-abelian $p$-extension fields of $\mathbf{Q}$ vanish. And we construct non-abelian $p$-extensions over some imaginary quadratic fields satisfying Leopoldt's conjecture on the $p$-adic regulator.
Citation
Norikazu Kubotera. "Greenberg's conjecture and Leopoldt's conjecture." Proc. Japan Acad. Ser. A Math. Sci. 76 (7) 108 - 110, Sept. 2000. https://doi.org/10.3792/pjaa.76.108
Information