Open Access
Translator Disclaimer
May 2000 Asymptotic behaviour of length spectrum of circles on non-flat complex space forms
Toshiaki Adachi
Proc. Japan Acad. Ser. A Math. Sci. 76(5): 60-65 (May 2000). DOI: 10.3792/pjaa.76.60

Abstract

In this paper, we study length spectrum of circles on a complex projective space and on a complex hyperbolic space. In particular, we focus ourselves on the asymptotic behaviour of the number of congruency classes of circles with length $\lambda$ and on the asymptotic behaviour of the number of congruency classes of circles of prescribed geodesic curvature with length not greater than $\lambda$.

Citation

Download Citation

Toshiaki Adachi. "Asymptotic behaviour of length spectrum of circles on non-flat complex space forms." Proc. Japan Acad. Ser. A Math. Sci. 76 (5) 60 - 65, May 2000. https://doi.org/10.3792/pjaa.76.60

Information

Published: May 2000
First available in Project Euclid: 23 May 2006

zbMATH: 0978.53072
MathSciNet: MR1771141
Digital Object Identifier: 10.3792/pjaa.76.60

Subjects:
Primary: 53C22 , 53C35

Keywords: circle , Complex space form , length spectrum

Rights: Copyright © 2000 The Japan Academy

JOURNAL ARTICLE
6 PAGES


SHARE
Vol.76 • No. 5 • May 2000
Back to Top