Open Access
March 1999 A base point free theorem of Reid type, II
Shigetaka Fukuda
Proc. Japan Acad. Ser. A Math. Sci. 75(3): 32-34 (March 1999). DOI: 10.3792/pjaa.75.32

Abstract

Let $X$ be a complete algebraic variety over $\mathbf{C}$. We consider a log variety $(X, \Delta)$ that is weakly Kawamata log terminal. We assume that $K_X + \Delta$ is a $\mathbf{Q}$-Cartier $\mathbf{Q}$-divisor and that every irreducible component of $\lfloor \Delta \rfloor$ is $\mathbf{Q}$-Cartier. A nef and big $\mathbf{Q}$-Cartier $\mathbf{Q}$-divisor $H$ on $X$ is called nef and log big on $(X, \Delta)$ if $H \vert_B$ is nef and big for every center $B$ of non-``Kawamata log terminal'' singularities for $(X, \Delta)$. We prove that, if $L$ is a nef Cartier divisor such that $aL - (K_X + \Delta)$ is nef and log big on $(X, \Delta)$ for some $a \in \mathbf{N}$, then the complete linear system $|mL|$ is base point free for $m \gg 0$.

Citation

Download Citation

Shigetaka Fukuda. "A base point free theorem of Reid type, II." Proc. Japan Acad. Ser. A Math. Sci. 75 (3) 32 - 34, March 1999. https://doi.org/10.3792/pjaa.75.32

Information

Published: March 1999
First available in Project Euclid: 23 May 2006

zbMATH: 0984.14001
MathSciNet: MR1700734
Digital Object Identifier: 10.3792/pjaa.75.32

Rights: Copyright © 1999 The Japan Academy

Vol.75 • No. 3 • March 1999
Back to Top