Open Access
2024 Differentiability in infinite dimension and the Malliavin calculus
Davide A. Bignamini, Simone Ferrari, Simona Fornaro, Margherita Zanella
Author Affiliations +
Probab. Surveys 21: 28-66 (2024). DOI: 10.1214/24-PS26

Abstract

In this paper we study two notions of differentiability introduced by P. Cannarsa and G. Da Prato (see [28]) and L. Gross (see [56]) in both the framework of infinite dimensional analysis and the framework of Malliavin calculus.

Funding Statement

The authors are members of GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of the Italian Istituto Nazionale di Alta Matematica (INdAM). Davide A. Bignamini and Simone Ferrari have been partially supported by the INdAM-GNAMPA Project 2023 “Equazioni differenziali stocastiche e operatori di Kolmogorov in dimensione infinita” CUP_E53C22001930001. Margherita Zanella has been partially supported by the INdAM-GNAMPA Project 2023 “Analisi qualitativa di PDE e PDE stocastiche per modelli fisici” CUP_E53C22001930001. The authors have no relevant financial or non-financial interests to disclose.

Acknowledgments

The authors are grateful to E. Priola and L. Tubaro for numerous useful comments and discussions.

Citation

Download Citation

Davide A. Bignamini. Simone Ferrari. Simona Fornaro. Margherita Zanella. "Differentiability in infinite dimension and the Malliavin calculus." Probab. Surveys 21 28 - 66, 2024. https://doi.org/10.1214/24-PS26

Information

Received: 1 August 2023; Published: 2024
First available in Project Euclid: 31 July 2024

Digital Object Identifier: 10.1214/24-PS26

Subjects:
Primary: 28C20
Secondary: 46G05

Keywords: interpolation theory , Lasry–Lions approximation , Malliavin calculus , Malliavin derivative

Vol.21 • 2024
Back to Top