Open Access
2009 Grigorieff Forcing on Uncountable Cardinals Does Not Add a Generic of Minimal Degree
Brooke M. Andersen, Marcia J. Groszek
Notre Dame J. Formal Logic 50(2): 195-200 (2009). DOI: 10.1215/00294527-2009-006

Abstract

Grigorieff showed that forcing to add a subset of ω using partial functions with suitably chosen domains can add a generic real of minimal degree. We show that forcing with partial functions to add a subset of an uncountable κ without adding a real never adds a generic of minimal degree. This is in contrast to forcing using branching conditions, as shown by Brown and Groszek.

Citation

Download Citation

Brooke M. Andersen. Marcia J. Groszek. "Grigorieff Forcing on Uncountable Cardinals Does Not Add a Generic of Minimal Degree." Notre Dame J. Formal Logic 50 (2) 195 - 200, 2009. https://doi.org/10.1215/00294527-2009-006

Information

Published: 2009
First available in Project Euclid: 11 May 2009

zbMATH: 1188.03033
MathSciNet: MR2535584
Digital Object Identifier: 10.1215/00294527-2009-006

Subjects:
Primary: 03E35
Secondary: 03E45

Keywords: degrees of constructiblity , Forcing , Grigorieff forcing , kappa degrees

Rights: Copyright © 2009 University of Notre Dame

Vol.50 • No. 2 • 2009
Back to Top