We consider an asymptotic version of $\alpha$-$\psi$ contractive mappings. We show the existence and uniqueness of fixed points. Caccioppoli's fixed point theorem is deduced from main results in this paper. Moreover, we discuss an asymptotic version of mappings related with $(c)$-comaprison functions.

## References

H. Ayde and E. Karapinar,

*Fixed point results for generalized $\alpha$-$\psi$-contractions in metric-like spaces and applications*, Electronic J. Diff. Equ.**2015**(2015), 1–15. H. Ayde and E. Karapinar,*Fixed point results for generalized $\alpha$-$\psi$-contractions in metric-like spaces and applications*, Electronic J. Diff. Equ.**2015**(2015), 1–15. V. Berinde,

*Iterative approximation of fixed points*, Springer-Verlag Berlin Heidelberg, 2007. 1165.47047 V. Berinde,*Iterative approximation of fixed points*, Springer-Verlag Berlin Heidelberg, 2007. 1165.47047 S. Chandok, M. S. Khan and T. D. Narang,

*Fixed point theorem in partially ordered metric spaces for generalized contraction mappings*, Azerb. J. Math.**5**(2015), 89–96. 1317.54015 S. Chandok, M. S. Khan and T. D. Narang,*Fixed point theorem in partially ordered metric spaces for generalized contraction mappings*, Azerb. J. Math.**5**(2015), 89–96. 1317.54015 G. Durmaz, G. Minak and I. Altun,

*Fixed point results for $\alpha$-$\psi$-contractive mappings including almost contractions and applications*, Abstr. Appl. Anal. 2014, Art. ID 869123, 10 pp. G. Durmaz, G. Minak and I. Altun,*Fixed point results for $\alpha$-$\psi$-contractive mappings including almost contractions and applications*, Abstr. Appl. Anal. 2014, Art. ID 869123, 10 pp. A. P. Farajzadeh, A. Kaewcharoen and S. Plubtieng,

*An application of fixed point theory to a nonlinear differential equation*, Abstr. Appl. Anal. 2014, Art. ID 605405, 7 pp. 1373.47052 A. P. Farajzadeh, A. Kaewcharoen and S. Plubtieng,*An application of fixed point theory to a nonlinear differential equation*, Abstr. Appl. Anal. 2014, Art. ID 605405, 7 pp. 1373.47052 N. Hussain, J. Ahmad and A. Azam,

*Generalized fixed point theorems formulti-valued $\alpha$-$\psi$-contractive mappings*, J. Inequal. Appl. 2014, 2014:348, 15 pp. N. Hussain, J. Ahmad and A. Azam,*Generalized fixed point theorems formulti-valued $\alpha$-$\psi$-contractive mappings*, J. Inequal. Appl. 2014, 2014:348, 15 pp. N. Hussain, M. A. Kutbi, S. Khaleghizadeh and P. Salimi,

*Discussions on recent results for $\alpha$-$\psi$-contractive mappings*, Abstr. Appl. Anal. 2014, Art. ID 456482, 13 pp. N. Hussain, M. A. Kutbi, S. Khaleghizadeh and P. Salimi,*Discussions on recent results for $\alpha$-$\psi$-contractive mappings*, Abstr. Appl. Anal. 2014, Art. ID 456482, 13 pp. E. Karapinar and B. Samet,

*Generalized $\alpha$-$\psi$ contractive tyep mappings and related fixed point theorems with applications*, Abstr. Appl. Anal. 2012, Art. ID 793486, 17 pp. E. Karapinar and B. Samet,*Generalized $\alpha$-$\psi$ contractive tyep mappings and related fixed point theorems with applications*, Abstr. Appl. Anal. 2012, Art. ID 793486, 17 pp. W. A. Kirk,

*Contraction mappings and extensions*, Handbook of metric fixed point theory, 1–34, Kluwer Acad. Publ., Dordrecht, 2001. MR1904272 10.1007/978-94-017-1748-9 W. A. Kirk,*Contraction mappings and extensions*, Handbook of metric fixed point theory, 1–34, Kluwer Acad. Publ., Dordrecht, 2001. MR1904272 10.1007/978-94-017-1748-9 W. A. Kirk,

*Fixed points of asymptotic contractions*, J. Math. Anal. Appl.**277**(2003), 645–650. 1022.47036 10.1016/S0022-247X(02)00612-1 W. A. Kirk,*Fixed points of asymptotic contractions*, J. Math. Anal. Appl.**277**(2003), 645–650. 1022.47036 10.1016/S0022-247X(02)00612-1 M. A. Kutbi and W. Sintunavarat,

*On the weakly $(\alpha,\psi,\xi)$-contractive condition for multi-valued operators in metric spaces and related fixed point results*, Open Math. 2016; 14: 167–180. 06632347 M. A. Kutbi and W. Sintunavarat,*On the weakly $(\alpha,\psi,\xi)$-contractive condition for multi-valued operators in metric spaces and related fixed point results*, Open Math. 2016; 14: 167–180. 06632347 A. Meir and E. Keeler,

*A theorem on contraction mappings*, J. Math. Anal. Appl.**28**(1969), 326–329. 0194.44904 10.1016/0022-247X(69)90031-6 A. Meir and E. Keeler,*A theorem on contraction mappings*, J. Math. Anal. Appl.**28**(1969), 326–329. 0194.44904 10.1016/0022-247X(69)90031-6 J J. Nieto and R. Rodríguez-López,

*Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations*, Order**22**(2005), 223–239. J J. Nieto and R. Rodríguez-López,*Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations*, Order**22**(2005), 223–239. A. C. M. Ran and M. C. B. Reurings,

*A fixed point theorem in partially ordered sets and some applications to matrix equations*, Proc. Amer. Math. Soc.**132**(2004) 1435–1443. 1060.47056 10.1090/S0002-9939-03-07220-4 A. C. M. Ran and M. C. B. Reurings,*A fixed point theorem in partially ordered sets and some applications to matrix equations*, Proc. Amer. Math. Soc.**132**(2004) 1435–1443. 1060.47056 10.1090/S0002-9939-03-07220-4 T. Suzuki,

*Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces*, Nonlinear Anal.**64**(2006) 971–978. 1101.54047 10.1016/j.na.2005.04.054 T. Suzuki,*Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces*, Nonlinear Anal.**64**(2006) 971–978. 1101.54047 10.1016/j.na.2005.04.054 M. Toyoda and T. Watanabe,

*Caccioppoli's fixed point theorem in the setting of metric spaces with a partial order*, to appear in the proceedings of the fifth Asian conference on Nonlinear Analysis and Optimization. M. Toyoda and T. Watanabe,*Caccioppoli's fixed point theorem in the setting of metric spaces with a partial order*, to appear in the proceedings of the fifth Asian conference on Nonlinear Analysis and Optimization. J. Weissinger,

*Zur Theorie und Anwendung des Iterationsverfahrens*, Math. Nachr.**8**(1952), 193–212. 0046.34105 10.1002/mana.19520080123 J. Weissinger,*Zur Theorie und Anwendung des Iterationsverfahrens*, Math. Nachr.**8**(1952), 193–212. 0046.34105 10.1002/mana.19520080123