Translator Disclaimer
2015 Multipliers of a Wandering Subspace for a Shift Invariant Subspace II
Tarahiko Nakazi
Nihonkai Math. J. 26(1): 31-36 (2015).

Abstract

Let $M$ be a shift invariant subspace in the two variable Hardy space $H^2(\Gamma_z\times\Gamma_w)$. We study $\mathcal{M}(M_z)=\{\phi\in H^\infty(\Gamma_z\times \Gamma_w) : \phi M_z\subseteq M_z\}$ where $M_z=M\ominus zM$. We give several sufficient conditions for $\mathcal{M}(M_z)=H^\infty(\Gamma_w)$ where $H^\infty(\Gamma_w)$ is the one variable Hardy space.

Citation

Download Citation

Tarahiko Nakazi. "Multipliers of a Wandering Subspace for a Shift Invariant Subspace II." Nihonkai Math. J. 26 (1) 31 - 36, 2015.

Information

Published: 2015
First available in Project Euclid: 30 March 2016

zbMATH: 1341.47005
MathSciNet: MR3482755

Subjects:
Primary: 47A15
Secondary: ‎46J15

Rights: Copyright © 2015 Niigata University, Department of Mathematics

JOURNAL ARTICLE
6 PAGES


SHARE
Vol.26 • No. 1 • 2015
Back to Top