Open Access
2009 Equivalence classes of mixed invariant subspaces over the bidisk
Kei Ji Izuchi, Masatoshi Naito
Nihonkai Math. J. 20(2): 145-154 (2009).

Abstract

A closed subspace $N$ of the Hardy space $H^2$ over the bidisk is said to be mixed invariant under $T_z$ and $T^\ast_w$ if $T_zN \subset N$ and $T^\ast_w N \subset N$. In this paper, we study unitary, similar and quasi-similar module maps for mixed invariant subspaces. We give some characterization of these maps. All unitary module maps are multiplication operators of unimodular functions. Under the condition $\dim(N \ominus zN)$ = 1, we can describe similar and quasi-similar module maps by outer functions.

Citation

Download Citation

Kei Ji Izuchi. Masatoshi Naito. "Equivalence classes of mixed invariant subspaces over the bidisk." Nihonkai Math. J. 20 (2) 145 - 154, 2009.

Information

Published: 2009
First available in Project Euclid: 26 March 2010

zbMATH: 1200.47010
MathSciNet: MR2650466

Subjects:
Primary: 32A35‎ , 47A15
Secondary: 46H25

Keywords: Hardy space , invariant subspace , mixed invariant subspace , module map , unitary equivalence

Rights: Copyright © 2009 Niigata University, Department of Mathematics

Vol.20 • No. 2 • 2009
Back to Top