February 2023 Quasi-Lie bialgebras of loops in quasisurfaces
Vladimir Turaev
Author Affiliations +
Kyoto J. Math. 63(1): 87-116 (February 2023). DOI: 10.1215/21562261-2022-0034

Abstract

We discuss natural operations on loops in a quasisurface and show that these operations define a structure of a quasi-Lie bialgebra in the module generated by the set of free homotopy classes of noncontractible loops.

Citation

Download Citation

Vladimir Turaev. "Quasi-Lie bialgebras of loops in quasisurfaces." Kyoto J. Math. 63 (1) 87 - 116, February 2023. https://doi.org/10.1215/21562261-2022-0034

Information

Received: 1 February 2020; Accepted: 22 February 2021; Published: February 2023
First available in Project Euclid: 21 December 2022

MathSciNet: MR4593191
zbMATH: 1520.57018
Digital Object Identifier: 10.1215/21562261-2022-0034

Subjects:
Primary: 57Kxx

Keywords: brackets , cobrackets , loops , quasisurfaces , surfaces

Rights: Copyright © 2023 by Kyoto University

Vol.63 • No. 1 • February 2023
Back to Top