Translator Disclaimer
March 2014 A Myers theorem via m-Bakry-Émery curvature
Lin Feng Wang
Kodai Math. J. 37(1): 187-195 (March 2014). DOI: 10.2996/kmj/1396008254

Abstract

In this paper, we prove that a complete manifold whose m-Bakry-Émery curvature satisfies

Ricf,m(x) ≥ −(m − 1) $\frac{K_0}{(1+r(x))^2}$

for some constant K0 < $-\frac{1}{4}$ should be compact. We also get an upper bound estimate for the diameter.

Citation

Download Citation

Lin Feng Wang. "A Myers theorem via m-Bakry-Émery curvature." Kodai Math. J. 37 (1) 187 - 195, March 2014. https://doi.org/10.2996/kmj/1396008254

Information

Published: March 2014
First available in Project Euclid: 28 March 2014

zbMATH: 1314.53072
MathSciNet: MR3189520
Digital Object Identifier: 10.2996/kmj/1396008254

Rights: Copyright © 2014 Tokyo Institute of Technology, Department of Mathematics

JOURNAL ARTICLE
9 PAGES


SHARE
Vol.37 • No. 1 • March 2014
Back to Top