Open Access
2015 Eggert's Conjecture for 2-Generated Nilpotent Algebras
Miroslav Korbelar
J. Gen. Lie Theory Appl. 9(S1): 1-3 (2015). DOI: 10.4172/1736-4337.S1-001

Abstract

Let A be a commutative nilpotent finitely-dimensional algebra over a field $F$ of characteristic $p \gt 0$. A conjecture of Eggert says that $p^. \operatorname{dim} A^{(p)} \operatorname{dim} A$, where $A^{(p)}$ is the subalgebra of $A$ generated by elements $a^p , a ∈ A$. We show that the conjecture holds if $A^{(p)}$ is at most 2-generated.

Citation

Download Citation

Miroslav Korbelar. "Eggert's Conjecture for 2-Generated Nilpotent Algebras." J. Gen. Lie Theory Appl. 9 (S1) 1 - 3, 2015. https://doi.org/10.4172/1736-4337.S1-001

Information

Published: 2015
First available in Project Euclid: 11 November 2016

zbMATH: 1211.16016
MathSciNet: MR3637845
Digital Object Identifier: 10.4172/1736-4337.S1-001

Keywords: Commutative nilpotent ring , Eggert's conjecture , Nilpotent algebra , Polynomial bases

Rights: Copyright © 2015 Ashdin Publishing (2009-2013) / OMICS International (2014-2016)

Vol.9 • No. S1 • 2015
Back to Top