Open Access
2011 The Generalized Burnside Theorem in Noncommutative Deformation Theory
Eivind Eriksen
J. Gen. Lie Theory Appl. 5: 1-5 (2011). DOI: 10.4303/jglta/G110109

Abstract

Let A be an associative algebra over a field $k$, and let $\mathcal{M}$ be a finite family of right $A$-modules. A study of the noncommutative deformation functor $\mathrm{Def}_{\mathcal{M}}$ of the family $\mathcal{M}$ leads to the construction of the algebra $\mathcal{O}^A(\mathcal{M})$ of observables and the generalized Burnside theorem, due to Laudal (2002). In this paper, we give an overview of aspects of noncommutative deformations closely connected to the generalized Burnside theorem.

Citation

Download Citation

Eivind Eriksen. "The Generalized Burnside Theorem in Noncommutative Deformation Theory." J. Gen. Lie Theory Appl. 5 1 - 5, 2011. https://doi.org/10.4303/jglta/G110109

Information

Published: 2011
First available in Project Euclid: 29 September 2011

zbMATH: 1218.16017
MathSciNet: MR2846733
Digital Object Identifier: 10.4303/jglta/G110109

Subjects:
Primary: 13D10 , 14D15

Rights: Copyright © 2011 Ashdin Publishing (2009-2013) / OMICS International (2014-2016)

Back to Top