Abstract
A new epidemiological model is introduced with nonlinear incidence, in which the infected disease may lose infectiousness and then evolves to a chronic noninfectious disease when the infected disease has not been cured for a certain time . The existence, uniqueness, and stability of the disease-free equilibrium and endemic equilibrium are discussed. The basic reproductive number is given. The model is studied in two cases: with and without time delay. For the model without time delay, the disease-free equilibrium is globally asymptotically stable provided that ; if , then there exists a unique endemic equilibrium, and it is globally asymptotically stable. For the model with time delay, a sufficient condition is given to ensure that the disease-free equilibrium is locally asymptotically stable. Hopf bifurcation in endemic equilibrium with respect to the time is also addressed.
Citation
Zizi Wang. Zhiming Guo. "Dynamical Behavior of a New Epidemiological Model." J. Appl. Math. 2014 1 - 9, 2014. https://doi.org/10.1155/2014/854528