Open Access
2014 Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers
Zhaolin Jiang, Nuo Shen, Juan Li
J. Appl. Math. 2014: 1-11 (2014). DOI: 10.1155/2014/585438

Abstract

The row first-minus-last right (RFMLR) circulant matrix and row last-minus-first left (RLMFL) circulant matrices are two special pattern matrices. By using the inverse factorization of polynomial, we give the exact formulae of determinants of the two pattern matrices involving Perrin, Padovan, Tribonacci, and the generalized Lucas sequences in terms of finite many terms of these sequences.

Citation

Download Citation

Zhaolin Jiang. Nuo Shen. Juan Li. "Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers." J. Appl. Math. 2014 1 - 11, 2014. https://doi.org/10.1155/2014/585438

Information

Published: 2014
First available in Project Euclid: 26 March 2014

zbMATH: 07010687
MathSciNet: MR3166775
Digital Object Identifier: 10.1155/2014/585438

Rights: Copyright © 2014 Hindawi

Vol.2014 • 2014
Back to Top