JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS 1 Vol., No., YEAR 2

3 https://doi.org/jie.YEAR..PAGE

A FIXED POINT THEOREM FOR MONOTONE MULTIVALUED MAPPINGS IN **ORDERED METRIC SPACES AND APPLICATION**

DAU HONG QUAN^{1,2}

ABSTRACT. Let (X, d, \preceq) be a complete ordered metric space. In this work, we present a fixed point existence theorem for monotone multivalued mappings $T: X \to 2^X$ under the assumption of Sadovskii: $\mu(T(\Omega)) < \mu(\Omega)$ for every bounded subset Ω of X, where μ is a measure of noncompactness on X. As an application, we show the existence of solutions for a specific class of functional integral inclusions.

1. Introduction

¹⁶ The study of the existence of solutions to functional integral inclusions based on an approach involving 17 measures of noncompactness has received much attention in recent years (see [1, 7, 9, 13]). In these 18 theorems, it is necessary to assume that the set-valued function under consideration is either lower 19 semi-continuous (upper semi-continuous) or continuous with respect to the Hausdorff metric $H(\cdot, \cdot)$ 20 on its domain. Subsequently, the application of Carathéodory's condition for multi-functions is a 21 commonly employed method to prove such existence theorems. More recently, several authors have 22 made noteworthy contributions to fixed point theory for multivalued mappings by using monotonicity $\frac{23}{23}$ instead of continuity (see [3, 5]).

24 Let (X,d) be a metric space and $T: X \to 2^X$ a multivalued mapping. In 2010, Zhang [14] considered 25 the partial order defined by Caristi's condition and proved that if for any $x \in X$, the set T(x) is a compact ²⁶ subset of X, and the set $\{x \in X : [x, \to) \cap T(x) \neq \emptyset\}$ is nonempty, then T has a fixed point. Afterwards, ²⁷ Taoudi [11] considered a weaker assumption, namely, that T(C) is contained in a compact subset of X for 28 any totally ordered subset C. By using the closedness of order intervals in ordered metric spaces, Taoudi achieved a similar result in the case of single-valued mappings (see Theorem 2.6, [11]). Following ³⁰ Taoudi's approach, we extend in Section 3 the results of Zhang and Taoudi under the assumption of 31 Sadovskiĭ: $v(T(\Omega)) < v(\Omega)$ for every bounded subset $\Omega \subseteq X$, where v is a measure of noncompactness 32 on the ordered metric space (X, d, \preceq) . In Section 4 we show the existence of solutions for a functional 33 integral inclusion to illustrate our theorem.

2. Preliminaries

36 Let (X,d) be a complete metric space. For $x \in X$, r > 0, we put $\overline{B}(x,r) := \{z \in X : d(x,z) \le r\}$. We also 37 put 38

- $\mathbb{B}(X) := \{ Z \subseteq X : Z \neq \emptyset, Z \text{ is bounded} \},\$
- $\mathbb{CL}(X) := \{ Z \subseteq X : Z \neq \emptyset, Z \text{ is closed} \},\$
- $\mathbb{CP}(X) := \{ Z \subseteq X : Z \neq \emptyset, Z \text{ is compact} \}.$

Definition 2.1. ([12]) Let (X, d) be a complete metric space. A measure of noncompactness (MNCs for 43 short) defined on the set X is a function $v : \mathbb{B}(X) \to [0,\infty)$ such that for any $\Omega_1, \Omega_2 \in \mathbb{B}(X)$, we have 44

1

39

41

42

⁴⁵ 2020 Mathematics Subject Classification. 47H10, 47H07, 47H05, 28B20.

⁴⁶ Key words and phrases. Fixed point, monotone multivalued operator, measure of noncompactness, functional integral 47 inclusion.

$$\begin{array}{ccc} \underline{1} & (i) \ v(\Omega_1) = 0 \Leftrightarrow \overline{\Omega}_1 \in \mathbb{CP}(X), \\ \underline{2} & (ii) \ v(\Omega_1) = v(\overline{\Omega}_1), \\ \end{array}$$

13 14

22 23

24

25 26 27

34

35

37

38

- (iii) $v(\Omega_1 \cup \Omega_2) = \max\{v(\Omega_1), v(\Omega_2)\}.$
- From Definition 2.1, we infer the following properties:
- (iv) If $\Omega_1 \subset \Omega_2$ then $\nu(\Omega_1) \leq \nu(\Omega_2)$,
- (v) $v(\Omega_1 \cap \Omega_2) \leq \min\{v(\Omega_1), v(\Omega_2)\},\$
- (vi) If $\Omega_1 = \{x_1, ..., x_n\}$ then $\nu(\Omega_1) = 0$.

4 5 6 7 8 9 10 11 Put $I := [0,1] \subseteq \mathbb{R}$. Let $\mathscr{C}(I,\mathbb{R})$ denote the space of all continuous real-valued functions defined on I. In this paper, we will use the MNCs Ψ_0 defined on $\mathscr{C}(I,\mathbb{R})$ as follows.

Example 1. First, we note that the space $\mathscr{C}(I,\mathbb{R})$ with the maximum norm

$$\|f\| = \max_{x \in I} |f(x)|$$

15 is a Banach space. Now, we take $\Omega \in \mathbb{B}(\mathscr{C}(I,\mathbb{R})), f \in \Omega$ and $\delta > 0$. Put 16

$$\begin{split} \Psi(f,\delta) &= \sup\{|f(x) - f(y)| : x, y \in I, |x - y| \le \delta\},\\ \Psi(\Omega,\delta) &= \sup_{f \in \Omega} \Psi(f,\delta),\\ \Psi_0(\Omega) &= \lim_{\delta \to 0} \Psi(\Omega,\delta). \end{split}$$

The function Ψ_0 is a MNCs on $\mathscr{C}(I;\mathbb{R})$ (see [2]).

Next, we need to recall some basic definitions in ordered metric spaces. Let (X,d) be a metric space. Suppose that X is equipped with a partial order \prec . Order intervals are defined as sets of the form

$$[a, \rightarrow) := \{x \in X : a \leq x\},\$$
$$(\leftarrow, a] := \{x \in X : x \leq a\}$$

28 for every $a \in X$. 29

30 **Definition 2.2.** An ordered metric space is a triple (X, d, \prec) such that in the metric space (X, d), order 31 intervals $[x, \rightarrow)$, $(\leftarrow, x]$ are closed for every $x \in X$. 32

33 **Example 2.** On $\mathscr{C}(I,\mathbb{R})$, we consider a partial order $\preceq_{\mathscr{C}}$ defined by

 $f \preceq_{\mathscr{C}} g$ if only if $f(t) \leq g(t) \ \forall t \in I$,

for every $f,g \in \mathscr{C}(I,\mathbb{R})$. It is not difficult to prove that $(\mathscr{C}(I,\mathbb{R}), \|.\|, \preceq_{\mathscr{C}})$ is an ordered metric space.

We also need to recall the following basic results in ordered metric spaces.

39 **Proposition 2.3** (see Proposition 1.1.3, [4]). If a nondecreasing (nonincreasing) sequence $(x_n)_n$ in an 40 ordered metric space (X, d, \preceq) has a cluster point a, then $a = \sup_n x_n$ (resp., $a = \inf_n x_n$). 41

Lemma 2.4 (see Lemma 1.1.5, [4]). If $(x_n)_n$ is a chain, it has a monotone subsequence. 42

43 **Definition 2.5** ([6]). A multivalued mapping $T: X \to 2^X \setminus \{\emptyset\}$ is called monotone if for any $x, y \in X$ 44 with $x \leq y$ and any $x_1 \in T(x)$, there exists $y_1 \in T(y)$ such that $x_1 \leq y_1$. 45

If $x \in T(x)$ then the point x is called a fixed point of T. The set of all fixed point of T is denoted by 46 47 Fix(T).

<u>1</u> Example 3. In the ordered space $(\mathscr{C}(I,\mathbb{R}), \preceq_{\mathscr{C}})$, we define the multivalued mappings $T_1, T_2: \mathscr{C}(I,\mathbb{R}) \to \mathbb{C}$ $\frac{2}{3} 2^{\mathscr{C}(I,\mathbb{R})} \setminus \{\emptyset\}$ as follows $T_1(f) = [f - 1, \rightarrow) \text{ and } T_2(f) = [f + 1, \rightarrow),$ for every $f \in \mathscr{C}(I,\mathbb{R})$. Obviously, T_1, T_2 are monotone and $Fix(T_1) = \mathscr{C}(I,\mathbb{R}), Fix(T_2) = \emptyset$. ⁶ Example 4. Monotone nonexpansive multivalued mappings in metric spaces provide natural examples 7 of monotone mapping (see [10]). 3. Main results Before presenting the main results, we establish a lemma that will be used later. This lemma is interesting and may find numerous mathematical applications. **13 Lemma 3.1.** Let $(x_n)_n$ and $(y_n)_n$ be two sequences in an ordered metric space (X, d, \preceq) that satisfy the following conditions: (*i*) $x_n \leq x_{n+1}$, and $x_n \leq y_n$ for every n; (*ii*) $\lim_{n\to\infty} x_n = x$, and $\lim_{n\to\infty} y_n = y$. *Then* $x \leq y$. *Proof.* Since $\lim_{n \to \infty} x_n = x$ and $(x_n)_n$ is nondecreasing, we infer that $x = \sup\{x_n : n \ge 1\}$. Fix $n \ge 1$. It is not difficult to see that $y_m \in [x_n, \rightarrow)$ for all $m \ge n$. Since order intervals are closed, we have $cl(\{y_m : m \ge n\}) \subseteq [x_n, \rightarrow)$, where $cl(\{y_m : m \ge n\})$ is the closure of the set $\{y_m : m \ge n\}$. Obviously, $y \in [x_n, \rightarrow)$ for every $n \ge 1$. Therefore, $x \le y$. **Theorem 3.2.** Let Y be a nonempty bounded closed subset in a complete ordered metric space (X, d, \preceq) 26 and $v: \mathbb{B}(X) \to [0,\infty)$ be a MNCs on X. Let $T: Y \to \mathbb{CL}(Y)$ be a monotone multivalued mapping such 27 that for each $\Omega \subseteq Y$ with $v(\Omega) > 0$, we have $v(T(\Omega)) < v(\Omega),$ where $T(\Omega) = \bigcup_{x \in \Omega} T(x)$. Assume that $\{x \in Y : [x, \to) \cap T(x) \neq \emptyset\} \neq \emptyset$. Then T has a fixed point. *Proof.* We are going to prove that there is a compact subset $A \subseteq Y$ such that $T(A) \subseteq A$. Take any $x_0 \in \{x \in Y : [x, \rightarrow) \cap T(x) \neq \emptyset\}$. Put $\mathcal{M} = \{M : M \in \mathbb{CL}(Y), x_0 \in M, \text{ and } T(M) \subseteq M\}.$ Since $Y \in \mathcal{M}$, $\mathcal{M} \neq \emptyset$. We also set $A = \bigcap_{M \in \mathcal{M}} M$, and $B = \overline{T(A)} \cup \{x_0\}$. It is not difficult to show that A belongs to \mathcal{M} and so we have $T : A \to \mathbb{CL}(A)$. Moreover, A = B. Indeed, since $x_0 \in A$, $T(A) \subseteq A$, and A is closed, it deduces that $B \subseteq A$. Thus we have $T(B) \subseteq T(A) \subseteq B,$ and so $B \in \mathcal{M}$. Hence $A \subseteq B$. By the properties of v, we have

$$\boldsymbol{\nu}(A) = \boldsymbol{\nu}(B) = \boldsymbol{\nu}(\overline{T(A)} \cup \{x_0\}) = \boldsymbol{\nu}(\overline{T(A)}) = \boldsymbol{\nu}(T(A)).$$

45 It deduces that v(A) = 0. Therefore, A is compact.

46 Denote

8 9

10 11

12

14

15

16

17

18

19 20

21

22

23

24

25

28

29

30 31

32

33

34 35

36

37 38

39

40

41 42

43 44

47

$$U = \{ x \in A : T(x) \cap [x, \to) \neq \emptyset \}.$$

5 Apr 2024 13:17:27 PDT 240104-DauQuan Version 3 - Submitted to J. Integr. Eq. Appl.

 $\frac{1}{2}$ Since $x_0 \in U$, U is a nonempty set. Clearly, if $x \in U$ and $x \leq y$ for some $y \in T(x)$, then $y \in U$. Suppose that Z is a chain in U. We set 3

$$F_z = [z, \rightarrow) \cap \overline{Z}$$
 for each $z \in Z$.

Clearly, F_z are nonempty closed subsets in A, for all $z \in Z$. Take any $z_1, ..., z_n \in Z$. Since Z is a 5 6 7 8 9 chain, there exists $i_0 \in \{1, ..., n\}$ with $z_{i_0} = \max\{z_1, ..., z_n\}$. It deduces that $z_{i_0} \in F_{z_i}$ for all $i \in \{1, ..., n\}$. Consequently,

$$\bigcap_{i=1}^n F_{z_i} \neq \emptyset.$$

This means that the family $(F_z)_{z \in Z}$ has the finite intersection property. It implies that

$$Z_0 = \bigcap_{z \in Z} F_z \neq \emptyset.$$

¹³ Take $v \in Z_0$. Since Z is a chain, we can find a nondecreasing sequence $(z_n)_n$ in Z such that $\lim_n z_n = v$. 14 Since $(z_n)_n \subseteq U$, there exists a sequence $(y_n)_n$ in A such that 15

$$z_n \leq y_n \in T(z_n)$$
 for all $n \geq 1$.

17 Since $z \leq v$ for all $z \in Z$, $z_n \leq v$ for all $n \geq 1$, and it follows from monotonicity of *T* that there is a 18 sequence $(v_n)_n$ in T(v) such that 19

$$y_n \leq v_n \in T(v)$$
 for all $n \geq 1$

21 We note that T(v) is compact. Thus we have $\lim_{k \to 0} v_{n_k} = t \in T(v)$ for a subsequence $(v_{n_k})_k$ of $(v_n)_n$.

22 Now we have

11 12

16

20

23

28

29

32 33

41 42

46

$$z_{n_k} \preceq v_{n_k}$$
 for all $k \ge 1$

²⁴ Thus $v \leq t \in T(v)$. It deduces that v is an upper bound for Z in U. By the Kuratowski-Zorn's lemma we 25 infer that U contains a maximal element u. Then $u \leq u^*$ for some $u^* \in T(u)$. Since $u^* \in U$, it implies 26 that $u = u^*$. Therefore *u* is a fixed point of *T*. 27

4. Application: Functional Integral Inclusion

Denote all Lebesgue integrable functions defined on I by $L^1(I,\mathbb{R})$. This space is equipped with the 30 following norm 31

$$||g||_1 = \int_0^1 g d\mu,$$

for every $g \in L^1(I, \mathbb{R})$. Clearly, $(L^1(I, \mathbb{R}), \|.\|_1)$ is a Banach space. 34

In this section, we prove the existence of solutions to a functional integral inclusion in the following 35 form: 36

(1)
$$f(x) \in F(x, f(x)) + \int_0^x k(x, s) \mathscr{F}(s, f(s)) ds, \text{ for every } x \in I,$$

where $F: I \times \mathbb{R} \to \mathbb{R}, k: I \times I \to \mathbb{R}$ are continuous and $\mathscr{F}: I \times \mathbb{R} \to \mathbb{CL}(\mathbb{R})$. By solution of (1), we mean a function $f \in \mathscr{C}(I, \mathbb{R})$ such that 40

$$f(x) = F(x, f(x)) + \int_0^x k(x, s) f_1(s) ds, \text{ for every } x \in I,$$

43 where $f_1(\cdot) \in \mathscr{F}(\cdot, f(\cdot))$ and $f_1 \in L^1(I, \mathbb{R})$.

44 Firstly, we consider the following partial order \leq_1 on the set $I \times \mathbb{R}$, 45

$$(x,y) \preceq_1 (x_1,y_1) \Leftrightarrow x \leq x_1 \text{ and } y \leq y_1$$

47 for every $(x, y), (x_1, y_1) \in I \times \mathbb{R}$.

5 Apr 2024 13:17:27 PDT 240104-DauQuan Version 3 - Submitted to J. Integr. Eq. Appl.

A FIXED POINT THEOREM FOR MONOTONE MULTIVALUED MAPPINGS

 $\begin{array}{c}
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
 8 \\
 9 \\
 10 \\
 \end{array}$ **Definition 4.1.** A multivalued map $\mathscr{F}: I \times \mathbb{R} \to \mathbb{CP}(\mathbb{R})$ is said to be L^1 -Carathéodory if

- (i) for each $x \in \mathbb{R}$, the mapping $\mathscr{F}(\cdot, x)$ is measurable,
- (ii) for almost all $t \in I$, the mapping $\mathscr{F}(t, \cdot)$ is upper semi-continuous,
- (iii) for each $\rho > 0$, there exists a function $g_{\rho} \in L^{1}(I, \mathbb{R}_{+})$ such that

$$|||\mathscr{F}(t,u)||| = \sup\{|v| : v \in \mathscr{F}(t,u)\} \le g_{\rho}(t), \quad a.e. \ t \in I,$$

and for all $u \in \mathbb{R}$ with $|u| \leq \rho$.

11

14

18

19

24 25

32 33

34

35

36 37 38

42

44

46 47

For any function $f \in \mathscr{C}(I, \mathbb{R})$, consider the selection set

$$S_{\mathscr{F}}(f) = \{ f_1 \in L^1(I, \mathbb{R}) : f_1(s) \in \mathscr{F}(s, f(s)), \text{ a.e. } s \in I \}.$$

¹² In [8], Lasota and Opial showed that if \mathscr{F} is L^1 -Carathéodory, then $S_{\mathscr{F}}(f) \neq \emptyset$ for each $f \in \mathscr{C}(I,\mathbb{R})$. ¹³ They also established the following lemma.

Lemma 4.2. Assume that a multivalued map \mathcal{F} statisfies the conditions (i), (ii) of Definition 4.1 with 15 $S_{\mathscr{F}}(f) \neq \emptyset$ for each $f \in \mathscr{C}(I,\mathbb{R})$. Let $\mathscr{G}: L^{1}(I,\mathbb{R}) \to \mathscr{C}(I,\mathbb{R})$ be a continuous linear mapping. Then 16 $\mathscr{G} \circ S_{\mathscr{F}} : \mathscr{C}(I,\mathbb{R}) \to 2^{\mathscr{C}(I,\mathbb{R})}$ is a closed graph operator on $\mathscr{C}(I,\mathbb{R}) \times \mathscr{C}(I,\mathbb{R})$. 17

Now we present the main theorem of this section.

20 Theorem 4.3. Assume that the maps in the functional integral inclusion (1) satisfy the following 21 conditions:

22 (C1) $F(\cdot, \cdot)$ is continuous on $I \times \mathbb{R}$, and $F(t, \cdot)$ is nondecreasing for every $t \in I$, 23

(C2) there exists $L \in [0, 1)$ such that

$$|F(x,f) - F(x,g)| \le L|f-g|, \text{ for each } f,g \in \mathbb{R}, x \in I,$$

26 (C3) $k(\cdot, \cdot)$ is continuous on $I \times I$,

- 27 (C4) $\mathscr{F}: I \times \mathbb{R} \to \mathbb{CP}(\mathbb{R})$ is L^1 -Carathéodory,
- 28 (C5) $S_{\mathscr{F}}(\cdot)$ is monotone: for any $f, g \in \mathscr{C}(I, \mathbb{R})$ with $f \preceq_{\mathscr{C}} g$ and any $f_1 \in S_{\mathscr{F}}(f)$, there is $g_1 \in S_{\mathscr{F}}(g)$ 29 such that $f_1(s) \leq g_1(s)$ for a.e. $s \in I$,
- 30 (C6) there exists a positive number r such that 31

$$r \ge \frac{\|F(x,0)\| + M\|g_r\|_1}{1 - L},$$

where $M = \max\{|k(x,y)| : (x,y) \in I \times I\}$, and the function g_r satisfies the condition (iii) in Definition 4.1,

(C7) there exists $f_0 \in \mathscr{C}(I,\mathbb{R})$ such that $f_0 \preceq_{\mathscr{C}} h_0$ for some $h_0 \in \mathscr{C}(I,\mathbb{R})$ with

$$h_0(x) \in F(x, f_0(x)) + \int_0^x k(x, s) \mathscr{F}(s, f_0(s)) ds$$
, for every $f \in I$.

39 Then the integral inclusion (1) has at least one solution in $\mathscr{C}(I,\mathbb{R})$. 40

41 *Proof.* Take $f \in \mathscr{C}(I, \mathbb{R})$ and put

(2)
$$\mathscr{T}(f)(x) = F(x, f(x)) + \int_0^x k(x, s) \mathscr{F}(s, f(s)) ds, \text{ for every } x \in I.$$

45 **Step 1.** We recall the following basic result: if $f_1 \in L^1(I, \mathbb{R})$ then the function

$$F_1(x) = \int_0^x k(x,s) f_1(s) ds$$

5 Apr 2024 13:17:27 PDT 240104-DauQuan Version 3 - Submitted to J. Integr. Eq. Appl.

A FIXED POINT THEOREM FOR MONOTONE MULTIVALUED MAPPINGS

1 is continuous on *I*. It implies that the function
2
3
4
5 is continuous on *I* for any
$$f_1 \in S_{\mathscr{F}}(f)$$
. Hence for each $f \in \mathscr{C}(I,\mathbb{R})$, we have $\mathscr{T}(f)$

is continuous on *I* for any $f_1 \in S_{\mathscr{F}}(f)$. Hence for each $f \in \mathscr{C}(I, \mathbb{R})$, we have $\mathscr{T}(f) \subseteq \mathscr{C}(I, \mathbb{R})$.

Next, we are going to show that $\mathscr{T}(f)$ is closed for each $f \in \mathscr{C}(I,\mathbb{R})$. Let (h_n) be a sequence in $\mathscr{T}(f)$ and $h_0 \in \mathscr{C}(I,\mathbb{R})$ such that $||h_n - h_0|| \to 0$ as $n \to \infty$. We need to show that $h_0 \in \mathscr{T}(f)$. Since $h_n \in \mathscr{T}(f)$, there exists $f_n \in S_{\mathscr{F}}(f)$ such that

$$h_n(x) = F(x, f(x)) + \int_0^x k(x, s) f_n(s) ds, \text{ for every } x \in I.$$

We consider the operator $\mathscr{G}: L^1(I, \mathbb{R}) \to \mathscr{C}(I, \mathbb{R})$ defined by

$$\mathscr{G}(f)(x) = \int_0^x k(x,s)f(s)ds$$
, for every $x \in I$.

¹⁵ Obviously, \mathscr{G} is continuous and linear. By Lemma 4.2, it follows that $\mathscr{G} \circ S_{\mathscr{F}}$ is a closed graph operator 16 on $\mathscr{C}(I,\mathbb{R}) \times \mathscr{C}(I,\mathbb{R})$. Furthermore, since $\max_{x \in I} |(h_n(x) - F(x,f(x))) - (h_0(x) - F(x,f(x)))| \to 0$ as $n \to \infty$, and $h_n(x) - F(x, f(x)) \in \mathscr{G} \circ S_{\mathscr{F}}(f)$, we have

$$h_0(x) - F(x, f(x)) \in \mathscr{G} \circ S_{\mathscr{F}}(f).$$

20 It implies that there is $f_0 \in S_{\mathscr{F}}(f)$ such that

$$h_0(x) - F(x, f(x)) = \int_0^x k(x, s) f_0(s) ds, \quad x \in I.$$

Therefore, $h_0 \in \mathscr{T}(f)$.

Step 2. Next, we are going to prove that $\mathscr{T}: \overline{B}(0,r) \to \mathbb{CL}(\overline{B}(0,r))$. Take $f \in \overline{B}(0,r)$ and $h \in \mathscr{T}(f)$. Then there is $h_1 \in S_{\mathscr{F}}(f)$ such that

$$h(x) = F(x, f(x)) + \int_0^x k(x, s)h_1(s)ds, \text{ for every } x \in I.$$

29 We have

$$|h(x)| \leq |F(x, f(x)) - F(x, 0)| + |F(x, 0)| + \left| \int_0^x k(x, s) h_1(s) ds \right|$$

$$\leq L|f(x)| + ||F(x, 0)|| + \int_0^x |k(x, s)|| ||\mathscr{F}(s, f(s))|| |ds|$$

$$\leq L||f|| + ||F(x, 0)|| + M||g_r||_1 \leq r$$

for every $x \in I$. It implies that $h \in \overline{B}(0, r)$. Hence $\mathscr{T}(f) \in \mathbb{CL}(\overline{B}(0, r))$ for every $f \in \overline{B}(0, r)$. **Step 3.** Take $f, h \in \overline{B}(0, r)$ such that $f \preceq_{\mathscr{C}} h$. By (C1),

$$F(x, f(x)) \le F(x, h(x))$$
 for all $x \in I$.

Furthermore, for each $f_1 \in \mathscr{T}(f)$, there exists $f_2 \in S_{\mathscr{F}}(f)$ such that

$$f_1(x) = F(x, f(x)) + \int_0^x k(x, s) f_2(s) ds$$
, for every $x \in I$.

44 By (C5), there is $h_2 \in S_{\mathscr{F}}(h)$ such that $f_2(s) \leq h_2(s)$ for a.e. $s \in I$. Put

$$h_1(x) = F(x,h(x)) + \int_0^x k(x,s)h_2(s)ds$$
, for every $x \in I$.

⁴⁷ Clearly, $h_1 \in \mathscr{T}(h)$ and $f_1(x) \le h_1(x)$ for every $x \in I$. Hence \mathscr{T} is monotone on $\overline{B}(0,r)$.

5 Apr 2024 13:17:27 PDT 240104-DauQuan Version 3 - Submitted to J. Integr. Eq. Appl.

A FIXED POINT THEOREM FOR MONOTONE MULTIVALUED MAPPINGS

Step 4. Assume that Ω is a nonempty subset of $\overline{B}(0,r)$ and $f \in \Omega$. Take any function $f_1 \in \mathscr{T}(f)$.

$$f_1(x) = F(x, f(x)) + \int_0^x k(x, s) f_2(s) ds, \text{ for every } x \in I.$$

Step 4. Assume that
$$\Omega$$
 is a nonempty subset of $\overline{B}(0,r)$ and $f \in \Omega$. Take any function $f_1 \in \frac{2}{3}$
Then there exists $f_2 \in S_{\mathscr{F}}(f)$ such that
$$f_1(x) = F(x, f(x)) + \int_0^x k(x,s) f_2(s) ds, \quad \text{for every } x \in I.$$
Fix $\varepsilon > 0$ and choose $x, y \in I$ such that $|x - y| \le \varepsilon$, we get
$$[f_1(x) - f_1(y)] \le |F(x, f(x)) - F(y, f(y))| + |\int_0^x k(x,s) f_2(s) ds - \int_0^y k(y,s) f_2(s) ds|$$

$$\le |F(x, f(x)) - F(x, f(y))| + |F(x, f(y)) - F(y, f(y))|$$

$$+ |\int_0^x k(x,s) f_2(s) ds - \int_0^x k(y,s) f_2(s) ds| + |\int_0^x k(y,s) f_2(s) ds - \int_0^y k(y,s) f_2(s) ds|$$

$$\le L|f(x) - f(y)| + |F(x, f(y)) - F(y, f(y))|$$

$$+ \int_0^x |k(x,s) - k(y,s)|g_r(s) ds + M| \int_x^y g_r(s) ds|$$

$$= L|f(x) - f(y)| + |F(x, f(y)) - F(y, f(y))|$$

$$+ \int_0^1 |k(x,s) - k(y,s)|g_r(s) ds + M|q(x) - q(y)|,$$

where

$$q(x) = \int_0^x g_r(s) ds.$$

Using given assumptions, we infer that the function F(z,t) is uniformly continuous on $I \times [-r,r]$, and the function q(x) is uniformly continuous on *I*. Hence when $\varepsilon \to 0$, we have

$$\begin{split} \Psi_r(F,\varepsilon) &:= \sup\{|F(x,z) - F(y,z)| : x, y \in I, |x-y| \le \varepsilon, |z| \le r\} \to 0\\ \Psi_r(k,g_r,\varepsilon) &:= \sup\left\{\int_0^1 |k(x,s) - k(y,s)|g_r(s)ds : x, y \in I, |x-y| \le \varepsilon\right\} \to 0\\ \overline{\Psi}(q,\varepsilon) &:= \sup\{|q(x) - q(y)| : x, y \in I, |x-y| \le \varepsilon\} \to 0. \end{split}$$

Now, from the obtained estimate, we have (see Example 1)

$$\Psi(f_1,\varepsilon) \leq L\Psi(f,\varepsilon) + \Psi_r(F,\varepsilon) + \Psi_r(k,g_r,\varepsilon) + M\overline{\Psi}(q,\varepsilon).$$

³⁸ It yields

$$\begin{split} \Psi(\mathscr{T}(\Omega), \varepsilon) &= \sup_{f_1 \in \mathscr{T}(\Omega)} \Psi(f_1, \varepsilon) \leq L \sup_{f \in \Omega} \Psi(f, \varepsilon) + \Psi_r(F, \varepsilon) + \Psi_r(k, g_r, \varepsilon) + M \overline{\Psi}(q, \varepsilon) \\ &\leq L \Psi(\Omega, \varepsilon) + \Psi_r(f, \varepsilon) + \Psi_r(k, g_r, \varepsilon) + M \overline{\Psi}(q, \varepsilon) \end{split}$$

and consequently,

$$\Psi_0(\mathscr{T}(\Omega)) \leq L \Psi_0(\Omega) < \Psi_0(\Omega).$$

It follows that the mapping \mathscr{T} satisfies all conditions of Theorem 3.2. Therefore, the functional integral inclusion (1) admits a solution in $\mathscr{C}(I,\mathbb{R})$.

τ

1 References
1 References 2 [1] J. Aubin, A. Cellina, Differential Inclusions, Springer Verlag, New York, 1984. 3 [2] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York 1980. 5 [3] B.C. Dhage, A functional integral inclusion involving Carathéodories, Electron. J. Qual. Theory Differ. Equ. 14 (2003), 1-18. 8 [4] S. Heikkilä, V. Lakshmikantham, Monotone iterative techniques for discontinuous nonlinear
 1980. [3] B.C. Dhage, A functional integral inclusion involving Carathéodories, Electron. J. Qual. Theory
 Differ. Equ. 14 (2003), 1-18. [4] S. Heikkilä, V. Lakshmikantham, <i>Monotone iterative techniques for discontinuous nonlinear differential equations</i>, Vol. 181, CRC Press, 1994.
 differential equations, Vol. 181, CRC Press, 1994. [5] N. Hussain, M.A. Taoudi, Fixed point theorems for multivalued mappings in ordered Banach spaces with application to integral inclusions, Fixed Point Theory Appl 2016, 65 (2016). [6] M.A. Khamsi, D. Misane, Disjunctive signed logic programs, Fundam. Inform. 32 (1997), 349-357 [7] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilin ear Differential Inclusions in Banach Spaces. Berlin, New York: De Gruyter; 2001 https://doi.org/10.1515/9783110870893
 [8] A. Lasota, Z. Opial, An application of the Kakutani- Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phy. 13 (1965), 781-786. [9] D. ORegan, Integral inclusions of upper semi-continuous or lower semi-continuous type, Proceedings.
Amer. Math. Soc. 124 (1996), 2391-2399. [10] S. Shukri, On monotone nonexpansive mappings in $CAT_p(0)$ spaces. Fixed Point Theory Apple [10] 2020, 8 (2020). https://doi.org/10.1186/s13663-020-00675-z.
 [11] M.A. Taoudi, <i>Fixed point theorems in partially ordered topological spaces with applications</i>. Topol Methods Nonlinear Anal. (2023), to appear. [12] J.M.A. Toledano, T.D. Benavides, G.L. Acedo, <i>Measures of noncompactness in metric fixed point</i>.
 theory, Birkhäuser, Basel, 1997. [13] D. Turkoglu, I. Altun, A fixed point theorem for multi-valued mappings and its applications to integral inclusions, Applied Mathematics Letters, 20(5) (2007), 563-570.
[14] X. Zhang, <i>Fixed point theorems of multivalued monotone mappings in ordered metric spaces</i> , Appl Math. Lett., 23(3) (2010), 235-240.
 ³⁰ ¹DEPARTMENT OF MATHEMATICS, PEDAGOGICAL UNIVERSITY OF KRAKOW, PL-30-084 CRACOW, POLAND ³¹ <i>E-mail address</i>: dauhongquandhv@gmail.com
³² 33 24 ² Department of Mathematics, Vinh University, 182 Le Duan, Vinh, Nghe An, Vietnam
34 35 36
37 38
39 40
41 42 43
37 38 39 40 41 42 43 44 45 46
46 47