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A FIXED POINT THEOREM FOR MONOTONE MULTIVALUED MAPPINGS IN
ORDERED METRIC SPACES AND APPLICATION

DAU HONG QUAN1,2

ABSTRACT. Let (X ,d,�) be a complete ordered metric space. In this work, we present a fixed point
existence theorem for monotone multivalued mappings T : X → 2X under the assumption of Sadovskiı̆:
µ(T (Ω))< µ(Ω) for every bounded subset Ω of X , where µ is a measure of noncompactness on X . As an
application, we show the existence of solutions for a specific class of functional integral inclusions.

1. Introduction

The study of the existence of solutions to functional integral inclusions based on an approach involving
measures of noncompactness has received much attention in recent years (see [1, 7, 9, 13]). In these
theorems, it is necessary to assume that the set-valued function under consideration is either lower
semi-continuous (upper semi-continuous) or continuous with respect to to the Hausdorff metric H(·, ·)
on its domain. Subsequently, the application of Carathéodory’s condition for multi-functions is a
commonly employed method to prove such existence theorems. More recently, several authors have
made noteworthy contributions to fixed point theory for multivalued mappings by using monotonicity
instead of continuity (see [3, 5]).

Let (X ,d) be a metric space and T : X → 2X a multivalued mapping. In 2010, Zhang [14] considered
the partial order defined by Caristi’s condition and proved that if for any x ∈ X , the set T (x) is a compact
subset of X , and the set {x ∈ X : [x,→)∩T (x) 6= /0} is nonempty, then T has a fixed point. Afterwards,
Taoudi [11] considered a weaker assumption, namely, that T (C) is contained in a compact subset of X for
any totally ordered subset C. By using the closedness of order intervals in ordered metric spaces, Taoudi
achieved a similar result in the case of single-valued mappings (see Theorem 2.6, [11]). Following
Taoudi’s approach, we extend in Section 3 the results of Zhang and Taoudi under the assumption of
Sadovskiı̆: ν(T (Ω))< ν(Ω) for every bounded subset Ω⊆ X , where ν is a measure of noncompactness
on the ordered metric space (X ,d,�). In Section 4 we show the existence of solutions for a functional
integral inclusion to illustrate our theorem.

2. Preliminaries

Let (X ,d) be a complete metric space. For x ∈ X , r > 0, we put B(x,r) := {z ∈ X : d(x,z)≤ r}. We also
put

B(X) := {Z ⊆ X : Z 6= /0, Z is bounded},
CL(X) := {Z ⊆ X : Z 6= /0, Z is closed},
CP(X) := {Z ⊆ X : Z 6= /0, Z is compact}.

Definition 2.1. ([12]) Let (X ,d) be a complete metric space. A measure of noncompactness (MNCs for
short) defined on the set X is a function ν : B(X)→ [0,∞) such that for any Ω1,Ω2 ∈ B(X), we have
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(i) ν(Ω1) = 0⇔Ω1 ∈ CP(X),
(ii) ν(Ω1) = ν(Ω1),

(iii) ν(Ω1∪Ω2) = max{ν(Ω1),ν(Ω2)}.
From Definition 2.1, we infer the following properties:

(iv) If Ω1 ⊂Ω2 then ν(Ω1)≤ ν(Ω2),
(v) ν(Ω1∩Ω2)≤min{ν(Ω1),ν(Ω2)},

(vi) If Ω1 = {x1, ...,xn} then ν(Ω1) = 0.

Put I := [0,1]⊆ R. Let C (I,R) denote the space of all continuous real-valued functions defined on I.
In this paper, we will use the MNCs Ψ0 defined on C (I,R) as follows.

Example 1. First, we note that the space C (I,R) with the maximum norm

‖ f‖= max
x∈I
| f (x)|

is a Banach space. Now, we take Ω ∈ B(C (I,R)), f ∈Ω and δ > 0. Put

Ψ( f ,δ ) = sup{| f (x)− f (y)| : x,y ∈ I, |x− y| ≤ δ},
Ψ(Ω,δ ) = sup

f∈Ω

Ψ( f ,δ ),

Ψ0(Ω) = lim
δ→0

Ψ(Ω,δ ).

The function Ψ0 is a MNCs on C (I;R) (see [2]).

Next, we need to recall some basic definitions in ordered metric spaces. Let (X ,d) be a metric space.
Suppose that X is equipped with a partial order �. Order intervals are defined as sets of the form

[a,→) := {x ∈ X : a� x},
(←,a] := {x ∈ X : x� a}

for every a ∈ X .

Definition 2.2. An ordered metric space is a triple (X ,d,�) such that in the metric space (X ,d), order
intervals [x,→), (←,x] are closed for every x ∈ X .

Example 2. On C (I,R), we consider a partial order �C defined by

f �C g if only if f (t)≤ g(t) ∀t ∈ I,

for every f ,g ∈ C (I,R). It is not difficult to prove that (C (I,R),‖.‖,�C ) is an ordered metric space.

We also need to recall the following basic results in ordered metric spaces.

Proposition 2.3 (see Proposition 1.1.3, [4]). If a nondecreasing (nonincreasing) sequence (xn)n in an
ordered metric space (X ,d,�) has a cluster point a, then a = supn xn (resp., a = infn xn).

Lemma 2.4 (see Lemma 1.1.5, [4]). If (xn)n is a chain, it has a monotone subsequence.

Definition 2.5 ([6]). A multivalued mapping T : X → 2X \{ /0} is called monotone if for any x,y ∈ X
with x� y and any x1 ∈ T (x), there exists y1 ∈ T (y) such that x1 � y1.

If x ∈ T (x) then the point x is called a fixed point of T . The set of all fixed point of T is denoted by
Fix(T).
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Example 3. In the ordered space (C (I,R),�C ), we define the multivalued mappings T1,T2 : C (I,R)→
2C (I,R) \{ /0} as follows

T1( f ) = [ f −1,→) and T2( f ) = [ f +1,→),

for every f ∈ C (I,R). Obviously, T1,T2 are monotone and Fix(T1) = C (I,R), Fix(T2) = /0.

Example 4. Monotone nonexpansive multivalued mappings in metric spaces provide natural examples
of monotone mapping (see [10]).

3. Main results

Before presenting the main results, we establish a lemma that will be used later. This lemma is interesting
and may find numerous mathematical applications.

Lemma 3.1. Let (xn)n and (yn)n be two sequences in an ordered metric space (X ,d,�) that satisfy the
following conditions:

(i) xn � xn+1, and xn � yn for every n;
(ii) lim

n→∞
xn = x, and lim

n→∞
yn = y.

Then x� y.

Proof. Since lim
n→∞

xn = x and (xn)n is nondecreasing, we infer that x = sup{xn : n≥ 1}. Fix n≥ 1. It is
not difficult to see that

ym ∈ [xn,→) for all m≥ n.
Since order intervals are closed, we have cl({ym : m ≥ n}) ⊆ [xn,→), where cl({ym : m ≥ n}) is the
closure of the set {ym : m≥ n}. Obviously, y ∈ [xn,→) for every n≥ 1. Therefore, x� y. �

Theorem 3.2. Let Y be a nonempty bounded closed subset in a complete ordered metric space (X ,d,�)
and ν : B(X)→ [0,∞) be a MNCs on X. Let T : Y → CL(Y ) be a monotone multivalued mapping such
that for each Ω⊆ Y with ν(Ω)> 0, we have

ν(T (Ω))< ν(Ω),

where T (Ω) =
⋃

x∈Ω T (x). Assume that {x ∈ Y : [x,→)∩T (x) 6= /0} 6= /0. Then T has a fixed point.

Proof. We are going to prove that there is a compact subset A ⊆ Y such that T (A) ⊆ A. Take any
x0 ∈ {x ∈ Y : [x,→)∩T (x) 6= /0}. Put

M = {M : M ∈ CL(Y ),x0 ∈M, and T (M)⊆M}.
Since Y ∈M , M 6= /0. We also set

A =
⋂

M∈M
M, and B = T (A)∪{x0}.

It is not difficult to show that A belongs to M and so we have T : A→CL(A). Moreover, A = B. Indeed,
since x0 ∈ A, T (A)⊆ A, and A is closed, it deduces that B⊆ A. Thus we have

T (B)⊆ T (A)⊆ B,

and so B ∈M . Hence A⊆ B. By the properties of ν , we have

ν(A) = ν(B) = ν(T (A)∪{x0}) = ν(T (A)) = ν(T (A)).

It deduces that ν(A) = 0. Therefore, A is compact.
Denote

U = {x ∈ A : T (x)∩ [x,→) 6= /0}.
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Since x0 ∈U , U is a nonempty set. Clearly, if x ∈U and x� y for some y ∈ T (x), then y ∈U . Suppose
that Z is a chain in U . We set

Fz = [z,→)∩Z for each z ∈ Z.
Clearly, Fz are nonempty closed subsets in A, for all z ∈ Z. Take any z1, ...,zn ∈ Z. Since Z is a
chain, there exists i0 ∈ {1, ...,n} with zi0 = max{z1, ...,zn}. It deduces that zi0 ∈ Fzi for all i ∈ {1, ...,n}.
Consequently,

n⋂
i=1

Fzi 6= /0.

This means that the family (Fz)z∈Z has the finite intersection property. It implies that

Z0 =
⋂
z∈Z

Fz 6= /0.

Take v ∈ Z0. Since Z is a chain, we can find a nondecreasing sequence (zn)n in Z such that lim
n

zn = v.

Since (zn)n ⊆U , there exists a sequence (yn)n in A such that

zn � yn ∈ T (zn) for all n≥ 1.

Since z� v for all z ∈ Z, zn � v for all n≥ 1, and it follows from monotonicity of T that there is a
sequence (vn)n in T (v) such that

yn � vn ∈ T (v) for all n≥ 1.

We note that T (v) is compact. Thus we have lim
k

vnk = t ∈ T (v) for a subsequence (vnk)k of (vn)n.

Now we have
znk � vnk for all k ≥ 1.

Thus v� t ∈ T (v). It deduces that v is an upper bound for Z in U . By the Kuratowski-Zorn’s lemma we
infer that U contains a maximal element u. Then u� u∗ for some u∗ ∈ T (u). Since u∗ ∈U , it implies
that u = u∗. Therefore u is a fixed point of T . �

4. Application: Functional Integral Inclusion

Denote all Lebesgue integrable functions defined on I by L1(I,R). This space is equipped with the
following norm

‖g‖1 =
∫ 1

0
gdµ,

for every g ∈ L1(I,R). Clearly, (L1(I,R),‖.‖1) is a Banach space.
In this section, we prove the existence of solutions to a functional integral inclusion in the following

form:

(1) f (x) ∈ F(x, f (x))+
∫ x

0
k(x,s)F (s, f (s))ds, for every x ∈ I,

where F : I×R→ R, k : I× I→ R are continuous and F : I×R→ CL(R). By solution of (1), we
mean a function f ∈ C (I,R) such that

f (x) = F(x, f (x))+
∫ x

0
k(x,s) f1(s)ds, for every x ∈ I,

where f1(·) ∈F (·, f (·)) and f1 ∈ L1(I,R).
Firstly, we consider the following partial order �1 on the set I×R,

(x,y)�1 (x1,y1)⇔ x≤ x1 and y≤ y1,

for every (x,y), (x1,y1) ∈ I×R.
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Definition 4.1. A multivalued map F : I×R→ CP(R) is said to be L1-Carathéodory if

(i) for each x ∈ R, the mapping F (·,x) is measurable,
(ii) for almost all t ∈ I, the mapping F (t, ·) is upper semi-continuous,

(iii) for each ρ > 0, there exists a function gρ ∈ L1(I,R+) such that

|‖F (t,u)‖|= sup{|v| : v ∈F (t,u)} ≤ gρ(t), a.e. t ∈ I,

and for all u ∈ R with |u| ≤ ρ .

For any function f ∈ C (I,R), consider the selection set

SF ( f ) = { f1 ∈ L1(I,R) : f1(s) ∈F (s, f (s)), a.e. s ∈ I}.

In [8], Lasota and Opial showed that if F is L1-Carathéodory, then SF ( f ) 6= /0 for each f ∈ C (I,R).
They also established the following lemma.

Lemma 4.2. Assume that a multivalued map F statisfies the conditions (i), (ii) of Definition 4.1 with
SF ( f ) 6= /0 for each f ∈ C (I,R). Let G : L1(I,R)→ C (I,R) be a continuous linear mapping. Then
G ◦SF : C (I,R)→ 2C (I,R) is a closed graph operator on C (I,R)×C (I,R).

Now we present the main theorem of this section.

Theorem 4.3. Assume that the maps in the functional integral inclusion (1) satisfy the following
conditions:

(C1) F(·, ·) is continuous on I×R, and F(t, ·) is nondecreasing for every t ∈ I,
(C2) there exists L ∈ [0,1) such that

|F(x, f )−F(x,g)| ≤ L| f −g|, for each f ,g ∈ R, x ∈ I,

(C3) k(·, ·) is continuous on I× I,
(C4) F : I×R→ CP(R) is L1-Carathéodory,
(C5) SF (·) is monotone: for any f ,g∈C (I,R) with f �C g and any f1 ∈ SF ( f ), there is g1 ∈ SF (g)

such that f1(s)≤ g1(s) for a.e. s ∈ I,
(C6) there exists a positive number r such that

r ≥ ‖F(x,0)‖+M‖gr‖1

1−L
,

where M = max{|k(x,y)| : (x,y) ∈ I× I}, and the function gr satisfies the condition (iii) in
Definition 4.1,

(C7) there exists f0 ∈ C (I,R) such that f0 �C h0 for some h0 ∈ C (I,R) with

h0(x) ∈ F(x, f0(x))+
∫ x

0
k(x,s)F (s, f0(s))ds, for every f ∈ I.

Then the integral inclusion (1) has at least one solution in C (I,R).

Proof. Take f ∈ C (I,R) and put

(2) T ( f )(x) = F(x, f (x))+
∫ x

0
k(x,s)F (s, f (s))ds, for every x ∈ I.

Step 1. We recall the following basic result: if f1 ∈ L1(I,R) then the function

F1(x) =
∫ x

0
k(x,s) f1(s)ds
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A FIXED POINT THEOREM FOR MONOTONE MULTIVALUED MAPPINGS 6

is continuous on I. It implies that the function

F2(x) = F(x, f (x))+F1(x) = F(x, f (x))+
∫ x

0
k(x,s) f1(s)ds

is continuous on I for any f1 ∈ SF ( f ). Hence for each f ∈ C (I,R), we have T ( f )⊆ C (I,R).
Next, we are going to show that T ( f ) is closed for each f ∈ C (I,R). Let (hn) be a sequence in

T ( f ) and h0 ∈ C (I,R) such that ‖hn−h0‖ → 0 as n→ ∞. We need to show that h0 ∈ T ( f ). Since
hn ∈T ( f ), there exists fn ∈ SF ( f ) such that

hn(x) = F(x, f (x))+
∫ x

0
k(x,s) fn(s)ds, for every x ∈ I.

We consider the operator G : L1(I,R)→ C (I,R) defined by

G ( f )(x) =
∫ x

0
k(x,s) f (s)ds, for every x ∈ I.

Obviously, G is continuous and linear. By Lemma 4.2, it follows that G ◦SF is a closed graph operator
on C (I,R)×C (I,R). Furthermore, since maxx∈I |(hn(x)−F(x, f (x))− (h0(x)−F(x, f (x))| → 0 as
n→ ∞, and hn(x)−F(x, f (x)) ∈ G ◦SF ( f ), we have

h0(x)−F(x, f (x)) ∈ G ◦SF ( f ).

It implies that there is f0 ∈ SF ( f ) such that

h0(x)−F(x, f (x)) =
∫ x

0
k(x,s) f0(s)ds, x ∈ I.

Therefore, h0 ∈T ( f ).
Step 2. Next, we are going to prove that T : B(0,r)→ CL(B(0,r)). Take f ∈ B(0,r) and h ∈T ( f ).

Then there is h1 ∈ SF ( f ) such that

h(x) = F(x, f (x))+
∫ x

0
k(x,s)h1(s)ds, for every x ∈ I.

We have

|h(x)| ≤ |F(x, f (x))−F(x,0)|+ |F(x,0)|+
∣∣∣∫ x

0
k(x,s)h1(s)ds

∣∣∣
≤ L| f (x)|+‖F(x,0)‖+

∫ x

0
|k(x,s)||‖F (s, f (s))‖|ds

≤ L‖ f‖+‖F(x,0)‖+M‖gr‖1 ≤ r

for every x ∈ I. It implies that h ∈ B(0,r). Hence T ( f ) ∈ CL(B(0,r)) for every f ∈ B(0,r).
Step 3. Take f ,h ∈ B(0,r) such that f �C h. By (C1),

F(x, f (x))≤ F(x,h(x)) for all x ∈ I.

Furthermore, for each f1 ∈T ( f ), there exists f2 ∈ SF ( f ) such that

f1(x) = F(x, f (x))+
∫ x

0
k(x,s) f2(s)ds, for every x ∈ I.

By (C5), there is h2 ∈ SF (h) such that f2(s)≤ h2(s) for a.e. s ∈ I. Put

h1(x) = F(x,h(x))+
∫ x

0
k(x,s)h2(s)ds, for every x ∈ I.

Clearly, h1 ∈T (h) and f1(x)≤ h1(x) for every x ∈ I. Hence T is monotone on B(0,r).

Submitted to Journal of Integral Equations and Applications - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

5 Apr 2024 13:17:27 PDT
240104-DauQuan Version 3 - Submitted to J. Integr. Eq. Appl.



A FIXED POINT THEOREM FOR MONOTONE MULTIVALUED MAPPINGS 7

Step 4. Assume that Ω is a nonempty subset of B(0,r) and f ∈ Ω. Take any function f1 ∈ T ( f ).
Then there exists f2 ∈ SF ( f ) such that

f1(x) = F(x, f (x))+
∫ x

0
k(x,s) f2(s)ds, for every x ∈ I.

Fix ε > 0 and choose x,y ∈ I such that |x− y| ≤ ε , we get

| f1(x)− f1(y)| ≤ |F(x, f (x))−F(y, f (y))|+
∣∣∣∫ x

0
k(x,s) f2(s)ds−

∫ y

0
k(y,s) f2(s)ds

∣∣∣
≤ |F(x, f (x))−F(x, f (y))|+ |F(x, f (y))−F(y, f (y))|

+
∣∣∣∫ x

0
k(x,s) f2(s)ds−

∫ x

0
k(y,s) f2(s)ds

∣∣∣+ ∣∣∣∫ x

0
k(y,s) f2(s)ds−

∫ y

0
k(y,s) f2(s)ds

∣∣∣
≤ L| f (x)− f (y)|+ |F(x, f (y))−F(y, f (y))|

+
∫ x

0
|k(x,s)− k(y,s)|| f2(s)|ds+

∣∣∣∫ y

x
|k(y,s)|| f2(s)|ds

∣∣∣
≤ L| f (x)− f (y)|+ |F(x, f (y))−F(y, f (y))|

+
∫ x

0
|k(x,s)− k(y,s)|gr(s)ds+M

∣∣∣∫ y

x
gr(s)ds

∣∣∣
≤ L| f (x)− f (y)|+ |F(x, f (y))−F(y, f (y))|

+
∫ 1

0
|k(x,s)− k(y,s)|gr(s)ds+M|q(x)−q(y)|,

where

q(x) =
∫ x

0
gr(s)ds.

Using given assumptions, we infer that the function F(z, t) is uniformly continuous on I× [−r,r], and
the function q(x) is uniformly continuous on I. Hence when ε → 0, we have

Ψr(F,ε) :=sup{|F(x,z)−F(y,z)| : x,y ∈ I, |x− y| ≤ ε, |z| ≤ r}→ 0

Ψr(k,gr,ε) :=sup
{∫ 1

0
|k(x,s)− k(y,s)|gr(s)ds : x,y ∈ I, |x− y| ≤ ε

}
→ 0

Ψ(q,ε) :=sup{|q(x)−q(y)| : x,y ∈ I, |x− y| ≤ ε}→ 0.

Now, from the obtained estimate, we have (see Example 1)

Ψ( f1,ε)≤ LΨ( f ,ε)+Ψr(F,ε)+Ψr(k,gr,ε)+MΨ(q,ε).

It yields

Ψ(T (Ω),ε) = sup
f1∈T (Ω)

Ψ( f1,ε)≤ L sup
f∈Ω

Ψ( f ,ε)+Ψr(F,ε)+Ψr(k,gr,ε)+MΨ(q,ε)

≤ LΨ(Ω,ε)+Ψr( f ,ε)+Ψr(k,gr,ε)+MΨ(q,ε)

and consequently,
Ψ0(T (Ω))≤ LΨ0(Ω)< Ψ0(Ω).

It follows that the mapping T satisfies all conditions of Theorem 3.2. Therefore, the functional integral
inclusion (1) admits a solution in C (I,R). �
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