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ABSTRACT. By the Schauder fixed point theorem, we first investigate the boundedness and
monotonicity of solutions of Caputo fractional differential equations. We also study the
asymptotic behavior of solutions of Caputo fractional differential equations under some dif-
ferent conditions. We prove that the solutions of the Caputo fractional differential equations
converge asymptotically to a constant as ¢ — 4oc0. Finally, several examples are given to
illustrate our main results.
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1. INTRODUCTION

The investigation of the properties of solutions for fractional differential equations has recent-
ly received a lot of attention. For example, Medved [19] proved that all solutions of fractional
differential equation with the Caputo derivative are asymptotic to a + bt as t — +o00. Diethelm
et al. [9] gave characteristics regarding the asymptotic behavior of solutions to some classes
of linear multi-order fractional differential equation systems. Grace and Zafer [10] studied the
asymptotic behavior of nonoscillatory solutions of fractional differential equations. Ahmad et
al. [3] studied the asymptotic behavior of solutions for a general class of fractional integro-
differential equations. Ponce [21] obtained properties on the behavior of mild solutions to
abstract fractional Cauchy problems for the Caputo and Riemann-Liouville fractional deriva-
tives. Cong et al. [6] presented some distinct asymptotic properties of solutions to Caputo
fractional differential equations. Kassim and Tatar [13] studied the asymptotic behavior of
solutions of fractional differential equations with Hadamard fractional derivatives. Wang et al.

[23] studied the long-term behavior of time fractional neutral functional differential equations.
1
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Zhu [27] proved that all solutions of Riemann-Liouville fractional differential equation are at-
tractive. Ky [16] devoted to discuss the asymptotic behavior of solutions to various classes of
two-term fractional differential equations. Zhu [28] presented that Riemann-Liouville fractional
differential equation has at least one globally attractive solution and z(t) = zt®~! + o(t#~7)
as t — +00.

Choi and Koo [5] proved that the solutions of the following Caputo fractional differential
equation

Dlx(t)y = e(t),  Be(0,1), t>t

are nondecreasing in ¢, where A > 0. Recently, Goodrich and Lizama [11] considered the
following fractional differential equation

a1 {Dgx(t) = f(tz(t), Be(L2), tel0,+00)
z(0) =0, 2'(0)>0.
They proved that all solutions of the equation (1.1) are nondecreasing whenever f(t,z) > 0
for all t > 0 and = € R. Goodrich and Lizama [12] considered the existence of positive and
nonincreasing solutions for the following boundary value problem
12) {D/gx(t) FAf(La(t) =0,  Be(L,2), te(0,1)
2'(0)=0, =z(1)=T.
where X and T are nonnegative constants. Zhu [29] investigated the following Riemann-Liouville
fractional differential equation
13) {pﬂx(t) =UO8((®) +K(t),  BE (O, te(0+oo)
lim,_, o+ t*P2(t) = zo.
Zhu presented that the equation (1.3) has at least one decreasing solution in Cf_ﬁ((),—l-oo),
Zhu also studied the asymptotic behavior of solution of the equation (1.3) under some different
conditions.
In this paper, we first study the boundedness and monotonicity of solution of the following
Caputo fractional differential equation

14 {Dgx(t) = f(t.a(t), Be(0.1), te(0,+x)
z(0) = xo.

By the Schauder fixed point theorem, we prove that the equation (1.4) has at least one non-
negative, bounded and nondecreasing continuous solution on [0, 4+00). Using the boundedness
of solution, we obtain the asymptotic behavior of solution of the equation (1.4). We also in-
vestigate the asymptotic behavior of solution of the following Caputo fractional differential
equation

w5) {Dgx(t) =I(t)p(x() + k(t), B (0,1), te (0,+00)

z(0) = zo.
We prove that the equation (1.5) has at least one nondecreasing solution = € C; [0, +00) and

converges asymptotically to a constant as ¢ — 400. To the best of our knowledge, there have
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been few papers to study the monotonicity and asymptotic behavior of the Caputo fractional
differential equations. The results and the methods of the proof in this paper seem to be new.

The outline of this paper is as follows. In Section 2, we introduce some notations, definitions
and theorems needed in our proofs. Some new results about the fractional integral functions, and
the equivalence between the Caputo fractional differential equation and the Volterra fractional
integral equation are also proved in this section. In Section 3, we give some sufficient conditions
on f for the boundedness and monotonicity of solution of fractional differential equation (1.4).
In Section 4, we investigate the asymptotic behavior of solution of Caputo fractional differential
equation (1.5). We proved that the nondecreasing solution of the equation (1.5) converges
asymptotically to a constant as ¢ — +o00. We also give the the asymptotic behavior of solution
of the equation (1.4) by using the boundedness of solution. In the last Section, we will give

some examples to illustrate our results.

2. PRELIMINARIES

In this section, we first introduce some notations and definitions which will be needed later.
Some new results of fractional integral functions are also discussed in this section. At last
we give the equivalence between the Caputo fractional differential equation and the Volterra
integral equation when f is continuous on (0, 400) x R.

We denote by C1[0,1] = {z : z € C[0,1] and z(t) > 0 for all t € [0,1]} and CT[0,+00) =
{12 € C[0,+00) and x(t) > 0 for all ¢ € [0,+00)}. Let C*(0,+00) = {z : 2’ € C(0,+00) for
all t € (0,400)}. Let CF[0,+00) = {z: 2 € CT[0,+00) and z(t) is a nondecreasing function
on [0,400)}. Let CF[0,+00) = {z : # € CT[0,+00) and supg<,. 4o x(t) is finite }. It is
known that C{[0,+00) is a Banach space with the norm ||lz|| = supgc, o, z(t). A family
U C CT[0,+00) is relatively compact if and only if for each T > 0 the restriction to [0,7] of
all functions from U forms an equicontinuous and uniformly bounded set. A sequence z,, is
convergent to z in CT[0, +00) if and only if z,, is uniformly convergent to z on compact subsets
of [0,400). Li [0,+00) (p > 1) is the space of all real valued functions f for which |f[? is

Lebesgue integrable over every bounded subinterval of [0, +00). For p,q > 0, the Beta function
is defined by

1
B(p,q) = / (1—s)P~1s77 1 ds.
0

It is well known that B(p,q) = Fr(&zig)v where I' is the Gamma function and

+oo
I'(p) = /0 sP~ 1 exp(—s)ds.

From the Beta function, we can get
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For 8 € (0, 1), the Riemann-Liouville fractional integral of order § is defined by

_ Lt p(s)
Iﬁp@)I«ﬁ)lﬁ (-3

where p € L'[0,T]. The Riemann-Liouville fractional derivative D?p is defined by

DPp(t) = %Il_ﬁp(t) = F(llﬂ)c(lit /0/ (tp<ss))ﬁds, a.e. t € [0,T].

where I'=#p is an absolutely continuous (AC) function on [0,T]. If p(0) exists and I'=#p €
ACI0,T], then the Caputo fractional derivative Dgp is defined by

DZp(t) = D (p(t) — p(0)).

From Theorem 2.1 in [15], If p € AC[0, T}, then we can get

Dgp(t) = F(ll—ﬁ)/o (tp/—(i))ﬁ ds, a.e. t € [0,T].

For more details about fractional calculus, we refer the reader to the texts [8, 15, 20, 22].

Now, we present some recent results of the following fractional integral function

ymzéu—@“%@w

In [7], if p € Cu[0,+00) with 0 < o < 8 < 1, then y(t) is continuous on [0, +00) and y(0) =
0. In [2], Agarwal et al. proved that y(¢) is continuous on [0,1] when p € LP[0,1], where
p > 1/8. Becker et al. [4] proved that y(t) is continuous on (0,1] when p € C(0,1] N L0, 1].
Zhu [28] proved that y(t) is continuous on (0,1] and #'~Py(t) is continuous on [0,1] when
fol sPA=0)|p(s)|Pds exists, where p > 1/7.

Lemma 2.1. [29] Let 0 < 8 < 1, and suppose that p € C(0,+o00) N L}

loc

[0,400). Then

t
lim (t—35)""1p(s)ds =0

t——+oo 0

when lim;_, o tPp(t) = 0.

Lemma 2.2. [29] Let 0 < 8 < 1, and suppose that p € C(0,+00) N L}

loc

[0,4+00). Then

t

: _ \B8-1 —
tlggloo o (t=5)"" pls)ds = sin(f)

aTm

when limy_, | o t2p(t) = a.

Lemma 2.3. Let 0 < 8 < 1. Suppose that p € LY [0,+00), where p > 1/8. Then

loc

1/p
[eor e oo (32) o () o)

where q = %,

30 Apr 2024 06:12:24 PDT
231209-ZhuTao Version 4 - Submitted to J. Integr. Eq. Appl.



Proof. Using the Holder inequality, we have

IR

t 1/q t
2.1 — g)aB-1) gq—af-1,4 ) ( pB—1 Pq )
(2.1) < (/0 (t—s) s s /0 5 |p(s)|Pds
/P
1/q pﬂ—l) 1/q <p—pﬁ> ( ' pB—1 p >1
<T (p—l r - /05 lp(s)|Pds .

Lemma 2.4. Let 0 < 3 < 1. Suppose that p € LT [0, +00), where p > 1/8, and there erists a

loc

t
S/ (t—s)ﬁ_lsl/”_ﬁsﬁ_l/ﬂp(s)|ds
0

1/p

g

nonnegative constant K such that [t°p(t)| < K fort € [1,+00). Then

y(t) = / (t - )71 p(s)ds

is a continuous and bounded function on [0, +00).

Proof. Since p € L¥ [0,+00), using Lemma 2.2 in [2], then we get that y(¢) is a continuous

loc

function on [0, +00). We only need to prove that |y(t)| is finite for ¢ € [1,+00). For ¢ > 1, we

have

(2.2) y(t) = /0 (t — 5)P~1p(s)ds + /1 (t — )P~ 1p(s)ds.

Using Lemma 2.3, we get

1 —s’@_l s)ds 1 —sﬁ_l s)|ds
/O<t )1 p(s)d s/oa )1 o(s)1d

1 1/p
o (=) (522) [ )

t
< / (t—s)P "1 Ks Pds
1

(2.3)

For t > 1, we have

/ (= 5P pls)ds

t
< K/ (t — )P~ s Pds
0
= KT(B)r(1-p)
_ Kr
~ sin(BT)”
From (2.3) and (2.4), we get that |y(¢)| is finite for ¢ € [1,+00). Therefore, y(t) is a bounded

(2.4)

function on [0, 4+00). O

Lemma 2.5. Let 0 < 8 < v < 1. Suppose that p € L} [0,+00), where p > 1/83, and there

loc

exists a nonnegative constant K such that |t7p(t)| < K fort € [1,400). Then

y(t) = / (t - )7~ p(s)ds

is a continuous and bounded function on [0,+00) and lim;, o y(t) = 0.
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Proof. For t € [1,4+00), we know that
(25 8 p()] = P p(t)] < KtP~7 < K.

From Lemma 2.4, we get that y(¢) is a continuous and bounded function on [0, 4+00). Since

B < 7, from (2.5), we get lim;_, o t?p(t) = 0. Using Lemma 2.1, we have lim;_, ; oo y(t) = 0. O
Lemma 2.6. Let to >0 and 0 < 8 < 1. If p € C(to,+00) N L}, [to, +0). Then

h(t) = / (t — 5)7Lp(s)ds

to

is continuous on (tg, +00).

Proof. Let s = u + tg. Then we get

h(t) = / (t—5)°"1p(s)ds = / ) O(t —to —u)’ " p(u + to)du.

to 0

Let po(t) = p(t + to) for t > 0, we have

MU=A_Ww%wﬂM*mme

Since p € C(tg, +00) N L}

loc

[to, +00), then po € C(0,+00) N L}

loc

[0,4+00), and using Lemma 4.6
in [4], we get that

y@ZA@—W“mw%

is continuous on (0, 400). Therefore, we get that h(t) = y(t —to) is continuous on (¢, +00). O
Lemma 2.7. [24] Let 0 <ty <t and 0 < 8,5y < 1. Then fort >ty we have

/t(t —5) P(s —to) Vds = (t —to) TPTYB(1 — B,1 — 7).

to

Lemma 2.8. Let tg > 0 and 0 < B < 1. Suppose that p € C(tg,+00) N L}, [to, +o0). If

(t —t0)®p(t) is a nonincreasing (nondecreasing) function on (to,+00), then

h(t) = / (t—5)P"1p(s)ds

to

is a nonincreasing (nondecreasing) function on (to, +00).

Proof. Using Lemma 2.6, we get that A(t) is a continuous function on (tg, +00). Let tg < t; <

ty < +o0. Since (t — ty)?p(t) is a nonincreasing function on (tg, +00), and using Lemma 2.7,
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then we have

h(t2) — h(t1)
- / 1z — )P p(s)ds

t1

[ s~ [ -9 pts)as

to to

= /tz(t2 — 5)5—1(8 _ to)_ﬁ(s _ to)ﬁp(S)dS

t1

" tgfsﬂflftl—sﬁfl s—10) P(s —to)?p(s)ds
o +/t0[< P (11— )P (5 — to) P (s — t0)° pls)

= /t2 (tz = )77 (s — to) P (t1 — to) p(t1)ds

t1

+/ lte — )P — (0 — )51 (s — t0) (s — t0)Pp(t1)ds

to

=(t; — to)ﬁp(tl) [/ 2(t2 - 5)571(3 - to)fﬁds - / 1(151 - 5)571(5 - to)fﬁds

to to
= (t1 = o) p(t1) [B(8,1 — B) = B(B,1 - B)]
=0.
Then we get that A(t) is a nonincreasing function on (g, +00).
Using the same procedure as in the proof of (2.6), we can also obtain that h(t) is a nonde-

creasing function on (tg, +0c) when (¢ — t9)?p(t) is a nondecreasing function on (tg, +00). [

Remark 2.9. In [29], if p € C(0, +00)N L}, [0, +00), then y(¢) is a nonincreasing (nondecreasing)
function on (0, +00) when #?p(t) is a nonincreasing (nondecreasing) function on (0, +o0). In
Lemma 2.8, we can immediately obtain the result in [29] when ¢y = 0. The proof in this paper
is significantly different from the proof of Lemma 2.6 in [29].

Now, we will give two examples to illustrate the applicability of the Lemma 2.8. For example,

tp_ \—1/2
h(t):/ %ds,
1 s —1

let

1
t2—1

1
Vi+1

a nonincreasing function on (1,+00). Using Lemma 2.8, we get that h(¢) is a nonincreasing

we know that p(t) = is a nonincreasing function on (1,400), and vt — 1p(t) = is

function on (1, 4+00), and
t
h(t) < / (t—s)"Y2%(s —1)"Y%ds = B(1/2,1/2) =, t € (1,4+00).
1

Let

s—1

h(t) = [(t 512, |2 _gs,

we know that p(t) = |/ is a nonincreasing function on (1,+00), and vt —1p(t) = V/t is

a nondecreasing function on (1,400). By Lemma 2.8, we obtain that h(t) is a nondecreasing
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function on (1, +00), and

t
h(t)Z/(t—s)_1/2d3:2\/t—1—>—|—oo
1

as t — +oo.

In [4, Lemma 4.8], Becker et al. obtained the following result of fractional integral operator.
Lemma 2.10. [4] Let p € C(0,T] N LY[0,T]. Let B,y > 0 with 3+~ > 1. Then

B4~y _ 1 i p(s) s
0 = ey, T

is continuous on [0,T]. Moreover,

1757 p(t) = I°17 p(t)
at each t € [0,T).

In [25, Proposition 3.2, f 0 < a < f <1 (orif a=0and 0 < 8 < 1) and v € C, then
IPu € C10,T] if and only if u(0) = 0. However, I? does not map C'[0,7] into C'[0,7] in

general. Using Lemma 2.10, we can obtain the following result.

Lemma 2.11. (1). If p € I°W, where W = C(0, +00)N L3, [0, +00), then I*=Pp € C1(0, +00).

(2). If p € C[0,+00) and p’ € C(0,+00) N L}, [0, 4+00), then I'=Pp € C1(0, +00).

loc
Proof. (1). Let p = I®v, where v € W. Then using Lemma 2.10, we have
I'“Bp =11y = Iv.
Since v € W, then we have I'=%p € C*(0, +00) and (I'~#p)’ = v.
(2). Since p € C[0,+00) and p' € C(0,+00) N L}, [0, +00), then using Lemma 2.10, we get

loc

pO) " s, PO

I Pp=1""BIp +p0) =1"PIp + = =1 Py + =
o) @) r@-p)
Then I'=8p € C1(0,+00) and (I'~Pp) = I'"Bp' + ?((Ol)i_ﬁf;.

O

In [24, Theorem 4.6], Webb gave an equivalence for a Caputo fractional differential equation
and an integral equation when the nonlinearity is of the form ¢~7 f. The case when there is
no singular term ¢~ is essentially well known, for example, see Diethelm [8, Lemma 6.2] and
Kilbas and Marzan [14, Theorem 1]. Recently, Lan and Webb [18] obtained the following result

when f € L? for some p > 1//. This result is very similar to Theorem 4.2 in [17].

Theorem 2.12. [18, Lemma 4] Let 0 < 8 < 1 and suppose that f € LP for some p > 1/0.

Then the following assertions are equivalent.
(1) w e C[0,T] satisfies
(2.7) u(t) = ug + I° f(t)

for each t € [0,T].
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(2) u € C[0,T], and I'*"Pu € AC, and u is a solution of the following Caputo fractional

initial value problem

DZu(t) = f(t),
(2.8) {u(%) s

for a.e. t € (0,T].

We now give the equivalence between the Caputo fractional differential equation and the

Volterra integral equation when f is continuous on (0, +00) x R.

Theorem 2.13. Let 0 < § < 1 and p > 1/8, let f be continuous on (0,+00) X R, and
g € LY [0,+00) for every x € C[0,+00), where g(t) = f(t,z(t)). If x € C[0,T] and I' Pz €
C1(0,+00), and  satisfies the following Caputo fractional initial value problem

(2.9) {Dgéﬂ(t) = f(t,z(t),  te(0,+00),
z(0) = zo.

Then x satisfies the following Volterra integral equation
1 t

(2.10) (1) = a0 + —/ (t— )0 f(s,2(s))ds,  t € [0,400).

L'(B) Jo
If x € C[0,T] satisfies the equation (2.10), then x satisfies the equation (2.9).
Proof. If x € C[0,T] and I'~P2 € C'(0, +00), suppose that z satisfies the equation (2.9). For
t € (0,+00), we get

Dga(t) = DP(a(t) — (0))

(2.11) = DI' P (x(t) — x)

= f(t,x(t)).
An integration of (2.11) yields

P (a(t) — @) = If (t,2(1)).
Using Lemma 2.10, we get
(2.12) I(x(t) — xo) = TP f(t,x(t)) = T1° f(t, (t)).
Differentiating (2.12), we obtain
(2.13) x(t) —xo = IPf(t,z(t),  te(0,400).
Since g € LY [0, +00), using Lemma 2.1 in [2], then we get

lim 19 f(t,2(t) = lim L/ (t — 5)%~1 f(s, x(s))ds = 0.
0

t—0+ t—0t+ (,3)
Together with the equality (2.13), then we deduce that

x(t) =a0 + IPf(t,2(t)),  t€[0,+00).

If z € C[0,T) satisfies the equation (2.10), since g € L [0, +0c0), then we get
t

lim [ (t—s)P"1f(s,2(s))ds = 0.

t—0t 0
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10

From equality (2.10), then we get x(0) = x¢. For ¢ € (0,400), using Lemma 2.10 and Lemma

2.11, we have
D2x(t) = D?(x(t) — x(0))

— DI'(a(t) — o)

(2.14) = DI PIP(f(t,z(t))
= DI(f(t,x(t))
= [t x(t)).
Hence, z satisfies the equation (2.9). O

In [26, Theorem 2.4], using the Holder inequality, Zhu obtained the following fractional

integral inequality.

Theorem 2.14. Let0 < T < 400 and 0 < a < f < 1, a(t) and I(t) are continuous, nonnegative

functions on [0,T). Let x(t) be a continuous, nonnegative function on [0,T) with

1 ltfsﬂflsxss
)/0@ V11 s)a(s)ds.

z(t) < alt) + W

Then

(2.15) () < (A(t) + /0 tL(s)A(s)ex. II'I|.|-I ls)a te0,T).

If a(t) is a nondecreasing function on [0,T), then the inequality (2.15) is reduced to

[e3

ott) < (A e ([ t L))

ae 1/a—1
where A(t) = 2V/21al/*(t) and L(t) = Z7eqy (DE2T(GEL)) T /e tiv/eqe),

Let @ = 1/p in Theorem 2.14 and using the same proof of Theorem 2.14, we can obtain the

following result.

Theorem 2.15. Let 0 < 8 < 1, let a € CT[0,+00) and | € C*(0,+00) N LY

1oel0, +00), where
p>1/B. Let x(t) be a continuous, nonnegative function on [0, +00) with
1 t
z(t) < a(t) + —/ (t — 5)37(s)x(s)ds.
I'(B) Jo

Then

(2.16) () < (A(t) + /0 " L(s)A(s) ex II'-|.|-I |s>1/p t € [0, +00).

If a(t) is a nondecreasing function on [0,+00), then the inequality (2.16) is reduced to

o(t) < (A(t) exp ( / t L<s>ds))1/p,

_ —1
where A(t) = 2P (t) and L(t) = Z (r(pfjll)r(fopjpf))p E=1pp(1).

Finally, the following fixed point theorems will be needed in the proof of the main results of

this paper.
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Theorem 2.16. [1] If C is a nonempty, closed, convex and bounded subset of a Banach space

E, and F : C — C is a continuous and completely continuous map. Then F has a fized point

in C.

Theorem 2.17. [1] Let E be a Banach space, C' a closed, conver subset of E and 0 € C. Let

F :C — C be a continuous and completely continuous map. Define
(2.17) E(F)={ze€C:x=\F(x) for some XA € (0,1)}.

Then either E(F) is unbounded or F has a fized point.

3. BOUNDEDNESS AND MONOTONICITY OF FRACTIONAL DIFFERENTIAL EQUATIONS

In this section, we study the boundedness and monotonicity of solution of the fractional
differential equation (1.4). We first show that the fractional differential equation (1.4) has at

least one nonnegative, nondecreasing and continuous solution on [0, +00).

Theorem 3.1. Let xg > 0 and p > 1/8. Let f : (0,400) X [0,400) — [0,+00) be continu-
ous, if g(t) = t° f(t,z(t)) is a nondecreasing function on (0,4oc) when x(t) is a nonnegative,
nondecreasing continuous function on [0,400). Suppose there are two nonnegative functions

I,k e C(0,400)NLY

loc

[0, 4+00) such that
(3.1) f(tu) <Il(t)u+ k(1)

for allt € (0,+00) and u € [0,400). Then the fractional differential equation (1.4) has at least

one nonnegative, nondecreasing and continuous solution on [0,400).

Proof. For any T > 0, we first show that the fractional differential equation (1.4) has at least
one solution x € CF[0,T]. Let us define the operator F' by the formula
1 t
(3.2) (Fa)(t) =20+ =—— / (t — )P 1 f(s,2(s))ds.
L'(B) Jo
Step 1. We first prove Fz € CF[0,T] when z € CF[0,T]. Since zo > 0 and f(¢,z(t)) is a
nonnegative function, then we get that Fz is a nonnegative function on [0, 7. Since z(t) and
g(t) are nondecreasing functions, usinglliemman2i8l we get that Fx is a nondecreasing function.
Since I,k € C(0,+00) N LY | [0,400), using (3.1), then we get that Fz is a continuous function
on [0,7]. Hence, Fx € CF[0,T] when z € C}[0,T].
Step 2. Now, we prove that the operator F is a compact operator. Let U € CF[0,7] and
lz|| < R for any x € U, where R > 0. We only need to prove that F(U) is uniformly bounded
and equicontinuous on [0, T]. From (3.1), we get f(t,z(t)) < RI(t)+k(t) for every x € U. Using

the same procedure as in Lemma 2.1 in [2], we get that F(U) is equicontinuous on [0,7T]. Let
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x € U. Using Lemma 2.3, we have

(Fa)(t) < 20 + —— /0 (t — )P [1(s)2(s) + k(s)]ds

I'(B)
< zo + ré) /Ot(t — 5)P 7 (s)ds + %ﬁ) /Ot(t — 5)8 7 k(s)ds
& <z + % (/Ot spﬁlzp(s)ds> v + % (/Ot spﬁlkp(s)ds> v

T 1 T 1/p
<z + % (/0 spB_llp(s)d8> + % </0 spﬁ_lk‘p(s)d3> ;

where M = T'1/4 (%) r/a (pp_fpf). This proves that the set F(U) is bounded. By Ascoli-
Arzela theorem, we know that F'U is relatively compact. Therefore, the operator F' is a compact
operator.

Step 3. We show that F' is continuous, that is x, — « implies Fz,, — Fx. Since z,, — z,

let ||z,]|, ||z]] < R, then we have

(3.4) (t =) f(s,2nls)) = fs,2(5))] < 2(t = 5)7H(RI(s) + k(s)).

Since I, k € L?[0,T], from Lemma 2.3, we know that fot(t — 8)PL(RI(s) + k(s))ds exists for all
t € (0,T]. For every s € (0,t), we know

(3.5) (t =) f(s,2n(s)) = (t = 5)7 71 f(s,2(5))

as n — +oo. From (3.4) and (3.5), using the Lebesgue dominated convergence theorem, then

we have

1

[(Fzn)(t) — (Fz)(8)] = G /0 (t = 8)7 7 f (s, 20(s)) = f(s,2(s))lds| — 0

as n — 4o00. Therefore, (Fz,)(t) — (Fz)(t) pointwise on [0,7] as n — +oco. With the fact

that F' is a compact operator, then we get that |Fx, — Fz| — 0 as n — +o0o, which implies
the map F' is continuous.

Step 4. If z € C;F[0,T] is any solution of

(3.6) £(t) = A (:c e (ts)“f(s,x(s))ds) ,

where 0 < A < 1, then we have

T €T L t — 8)57(s)x(s)ds L t — 8)% 1 k(s)ds
() < a0+ g [ =9 (s + s [ 0= k(e

M T 1/p 1 .
<zg+ = / sPP1EP(5)ds —|——/ t— )P (s)z(s)ds.
0 F(m<0 (5 £ 9 ()
Using Theorem 2.15, we get

T 1/p T
x(t)SQ(Io+F](WB)</O spﬁlws)ds) )exp</0 L](j)ds) te(0.7)

where L(t) = I%Z(};) (I‘(ppﬁ__ll)F(pp__pf))pfltpﬂfllp(t) and p > 1/83. Therefore, z(t) is a bounded

function on [0, T7.

(3.7)
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Finally, applying fixed point theorem 2.17, we get that there exists a function = € C}[0, T
such that F'z = x. From Theorem 2.13, we know that the function z is also a solution of the
fractional differential equation (1.4).

Since T' can be chosen arbitrarily large, then we know that the fractional differential equation

(1.4) has at least one solution in C[0, +00). Thus, we complete the proof. O

Now, we begin to study the boundedness of solutions of Caputo fractional differential equa-
tion (1.4). We first discuss the boundedness of the equation (1.4) when f(¢,u) < I(t)u” + k(t),
where 0 < p < 1.

Theorem 3.2. Let 29 >0, 0<u<1andp>1/8. Let f:(0,4+00) x [0,400) = [0,400) be

continuous. Suppose there are two nonnegative functions I,k € C(0,+0c0) N LY [0,+00), and

loc

there exists a nonnegative constant K such that t°1(t) < K and t°k(t) < K fort € [1,400). If
f satisfies the following condition
(3.8) 7t 0) < ) + k(o)

for allt € (0,+00) and u € [0,400). Then the fractional differential equation (1.4) has at least

one nonnegative bounded solution on [0, +00).

Proof. Let us define the operator F' by the formula

L t — )P (s, 2(s))ds
w5 | =9 e

where z € C;[0, +00). Since t71(t),t°k(t) < K for t € [1,+00), using Lemma 2.4, then there

(3.9) (Fz)(t) = 20 +

exist two nonnegative constants My, My such that M; = SUP<t< o0 F fo B 1l (s)ds and
Mp = SUPp<i y oo 1“(6) fo 5)8~1k(s)ds. Let R > 0 sufficiently large such that
(3.10) xo+ MR + My < R,

where 0 < p < 1. We define the subset Ug of C [0, +00) as follows

(3.11) Ur = {x c2 € Cf[0,+00) and ||z|| = sup x(t) < R} .
0<t<+00

The set Ug is nonempty, convex, closed and bounded in C’S‘ [0, 4+00).
We can easily obtain that Fx is a nonnegative continuous function on [0,400) when z €

C[0,+00). If x € Ug, then we have

1 t
(Fa)(t) < 20 + —— / (t — )7 1[i(s)2"(s) + k(s)|ds
L'(B) Jo
(3.12) < 29+ MyR* + M,
<R.
Therefore, Fx € Ugr when = € Ug.
For any T' > 0, using the same procedure as in the proof of Theorem 3.1, we know that

F : CT[0,T] - CT[0,T] is a a continuous and completely continuous map. Therefore, F :
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Ci[0,+00) — CF[0,+00) is a continuous and completely continuous map. Using Theorem
2.16 and Theorem 2.13, we get that the fractional differential equation (1.4) has at least one
solution in C{ [0, +00). O

Next, we will give the boundedness of Caputo fractional differential equation (1.4) for the

case pu = 1.

Theorem 3.3. Let 0 >0,0< 8 <y <1andp>1/B. Let f:(0,400) x [0, +00) — [0, 4+00)

be continuous. Suppose there are two nonnegative functions I,k € C(0,+00)N LY [0,400), and

loc

there exists a nonnegative constant K such that t71(t) < K and t°k(t) < K fort € [1,+00). If

f satisfies the following condition
(3.13) flt,uw) <I(t)u+ k(t)

for allt € (0,400) and u € [0,+00). Then the fractional differential equation (1.4) has at least

one nonnegative bounded solution on [0, +00).
Proof. If x € C{[0,+00) and let R = supy< ., o, (t), then we have

(Fx)(t) <xo+ 1 /0 (t— s)ﬂ_l[l(s)x(s) + k(s)]ds

I'(8)
(3.14) SJUO‘F%/O (t—S)ﬁfll(s)dS—i-ﬁ/O (t_s)ﬁflk(s)ds

<xo+ MR+ Ms.
where M, My are as defined in Theorem 3.2. Then we get Fx € C;[0,+oc) when x €
Ci[0,400). Similar to the proof of the Theorem 3.2, we can get that F : CJ[0,+00) —
C’J [0, +00) is a continuous and completely continuous map.

If x € CJ [0, +00) is any solution of

(3.15) z(t) = A <xo + 11(15)/0 (t— s)ﬁlf(s,x(s))ds) ,

where 0 < A < 1, then we have

2(t) < 70+ ﬁ/o (t— )71 f(s, 2(s))ds

(3.16) <30+ F(lﬁ)/o (t — 5)°~11(s)2(s)ds + F(lﬁ)/o (t — 5)°k(s)ds
<xo+ Mo + ﬁ /Ol(t — 5)7 7N (s)x(s)ds.

Using Theorem 2.15, then we have

2(t) < 2(w0 + Ms) exp (/Ot L(s)ds> ,

p

) p—1 p—1
t1(t) < K for t € [1,+00), then we get that tP5=1[P(t) < KPtPP~P7=L for ¢ € [1,+00), and

_ ~1
where L(t) = 2 ; (I‘(pﬁ_l)I‘(p_pB))p tPA=1IP(t) and p > 1/B. Since 0 < B < v < 1 and
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the integral f1+oo sPP=1IP(s)ds is convergent. Consequently, we obtain that f0+oo sPA=LIP(s)ds
is convergent. Therefore, we get that fOJrOO L(s)ds is finite, and

L)

x(t) < 2(wo + Ma) exp (/0 P

ds> , t €[0,+00).

This proves that any solution of the equation (3.15) is a bounded function on [0, +00).
Using Theorem 2.17 and Theorem 2.13, we get that the fractional differential equation (1.4)

has at least one solution in C;[0, +00). g
From Theorem 3.1 and Theorem 3.2, we can immediately obtain the following result.

Theorem 3.4. Let x0 > 0, 0 < u < 1 andp > 1/8. Let f: (0,400) x [0,+00) — [0,400)
be continuous, if g(t) = tPf(t,x(t)) is a nondecreasing function on (0,+00) when x(t) is a
nonnegative, nondecreasing continuous function on [0,400). Suppose there are two nonnegative
functions I,k € C(0,4+00) N LY

tPl(t) < K and tPk(t) < K fort € [1,4+00). If f satisfies the following condition

[0,+00), and there exists a nonnegative constant K such that

(3.17) F(tw) < L()u" + k(2)

for allt € (0,400) and u € [0,4+00). Then the fractional differential equation (1.4) has at least

one nonnegative, bounded and nondecreasing continuous solution on [0, +00).

4. ASYMPTOTIC BEHAVIOR OF FRACTIONAL DIFFERENTIAL EQUATIONS

In this section, we first study the asymptotic behavior of the fractional differential equation

(1.5).

Theorem 4.1. Letxo > 0,0 < p <1 andp > 1/5. If nonnegative functions I,k € C(0,+00)N
LY [0, +00) and tP1(t),tPk(t) are two mondecreasing functions on (0,400), and suppose that
lim; 1o t21(t) = a and limy_,, o t°k(t) = b. Let nonnegative and nondecreasing function
¢ € C[0,+00) and p(x) < Mz* for x € [0,400), where M is a nonnegative constant. Then the

fractional differential equation (1.5) has at least one nondecreasing solution x € Cy [0, 4+00) and

lim; 4o x(t) = x*, where x* is the minimal nonnegative solution that satisfies the following

equation
7r
4.1 = _— b).
(41) £ =20+ For o @9 + )
Proof. Let
(4.2) U* = {:z: c2 € CF[0,+00) and ||z|| = sup x(t) < a:*}
0<t<+o00

We can easily get that Fz is a nonnegative nondecreasing continuous function on [0, +00) when

r € CF[0,+00). If z € U*, since ¢ is a nondecreasing function on [0, +o00) and t?1(t), t°k(t)
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are two nondecreasing functions on (0, +00), then we have

(Fa)(t) < 20+ = / (t— )P L[i(s) () + k(s)]ds

ING))
x @(m*) im ! — 53 1(s)ds L im ! ) 1k(s)ds
(4.3) < To T(8) tgm/o(t )P (s)d T 505) Jim 0<t P k(s)d
=x0 + aﬂ(p(x*) br

T(8)sin(B7)  T'(3)sin(Bm)

Therefore, Fx € U* when x € U*.
The rest of the proof is similar to that of Theorem 3.2. We know that the fractional dif-
ferential equation (1.5) has at least one solution x € U* that satisfies the following fractional

integral equation

(4.4) x(t) = xo + ! ] /0 (t — )P L[1(s)p(x(s)) + k(s)]ds, t € [0,4+00).

I(s
Since z(t) is a nonnegative, nondecreasing and bounded function on [0,400), we know that

limy_, 1 oo 2(t) exists. Using Lemma 2.2, we get

lim 2(t) = lim [mo—l—l /0 (t—s)ﬁ_l[l(s)go(m(s))+k(s)]d5]

t—~+o0o t—r+o00 r'(B)
(4.5) :Iw+ﬂ%[AH;A(FﬂWAKQQMQM&hEEQOQ—SﬁAMQM

@ i () + i |

From (4.1) and lim;_, o z(t) < z* , then we get lim; o 2(t) = x*. Thus, we complete the

:(I/.O—’_

proof. O

Remark 4.2. In Theorem 4.1, we know that the equation (4.1) has at least one nonnegative

solution. In fact, let

(4.6) g(@) = — 20 — mww) +0).
We have

(4.7) 9(0) = —ao — mwm) +0) <0
and

(4.8) g(x) > x—xo — m(aMx“ +0b).

From (4.8), we get lim,_, oo g(x) = 400 for 0 < p < 1. Therefore, there has at least one
nonnegative solution z such that g(z) = 0, that is,  is a nonnegative solution of the equation
(4.1).

If the equation (4.1) has a unique nonnegative solution x*, from Theorem (4.1), then we can
prove that the fractional differential equation (1.5) has at least one nondecreasing solution and

limt*)+oo .'L'(t) = x*.
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Now, we begin to study the asymptotic behavior of the fractional differential equation (1.4).

Theorem 4.3. Let 10 > 0,0< <y <1landp>1/8. Let f: (0,4+00) x [0,400) — [0, +00)
be continuous. Let I,k and k; € C(0,+o00) N LY

1el0,+00) be nonnegative functions. Suppose

there exists a nonnegative constant K such that t7l(t) < K for t € [1,4+00), and there is a
nonnegative constant b such that lim;_, oo t%k(t) = b and lim;_, oo t°k1(t) = b. If f satisfies
the following condition

(4.9) ke (t) < f(tu) < 1t + k()

for allt € (0,4+00) and u € [0,400). Then the fractional differential equation (1.4) has at least

one bounded solution x € Cy [0, +00) and limy_, 1o z(t) = ¢ + W

Proof. From Theorem 3.3, we know that the fractional differential equation (1.4) has at least

one bounded solution = € C{ [0, +00) that satisfies the following fractional integral equation

(4.10) x(t) = xo + ﬁ/@ (t —8)P7 1 f(s,2(s))ds, t €10, 4+00).

Let R = supg<;« o0 ©(t), then we get

x L t —sﬁfl s)ds < x x L t —5671 S s)|ds
(4.11) o+w>/0<t Yo~ (5)ds < <t>so+r<ﬁ)/0<t VIRI(s) + k(s))ds.

Since limy_, 4 o0 t°1(t) = 0, limy_ 4 o0 t°k(t) = b and limy_, , o t°k; () = b, and using Lemma 2.2,

we get
t
(4.12) t_l)i+moo {xo + %ﬂ) /0 (t—s)" "1k (s)ds} =20 + F(ﬂ)::L(BW)
and
(4.13) lim [azo L /t(t — )P 1[RI(s) + k(s)]ds} I
toeo L'(B) Jo T'(8) sin(B)
From (4.12) and (4.13), we get lim;, o0 2(t) = 29 + W Thus, we complete the proof.

O

Theorem 4.4. Let 29 >0,0< <y <1andp>1/8. Let f: (0,400) x [0, +00) —= [0, 400)

be continuous. Suppose there are two nonnegative functions I,k € C(0,+oo) N LY

[0, 4+00), and
there exists a nonnegative constant K such that t71(t) < K and t7k(t) < K fort € [1,400). If
f satisfies the following condition

(4.14) Ftu) < U(t)u+ k()

for allt € (0,400) and u € [0,4+00). Then the fractional differential equation (1.4) has at least

one nonnegative bounded solution on [0,+00) and lim;_, 4 z(t) = 0.

Proof. From Theorem 3.3, we know that the fractional differential equation (1.4) has at least

one nonnegative bounded solution x € Cy [0, +00) that satisfies the following fractional integral
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equation
1 ¢
(4.15) (1) = a0 + —/ (t— )0 f(s,2(s))ds,  t e [0,400).
I'(8) Jo
Let R = supg<;« o (), then we get
1 t
(4.16) xo <z(t) <z + == / (t — s)P7YRI(s) + k(s)]ds.
L(8) Jo
Since lim;_, y oo tP1(t) = lim;_ o t°k(t) = 0, using Lemma 2.1, we get
1 t
(4.17) ti}i?oo [xo + ) /0 (t — 8)P7YRI(s) + k(s)]ds| = 0.
From (4.16) and (4.17), we get lim;_, o 2(t) = zo. Thus, we complete the proof. O

5. EXAMPLES

Example 5.1. Consider the following Caputo fractional differential equation

1/2 _xz(t)
(5.1) De7z(t) = 127 t € (0,400),
z(0) = 1.

From Theorem 3.1 and using the same method in the proof of the Theorem 3.2 in [26],
we get that the fractional differential equation (5.1) has a unique nonnegative nondecreasing
continuous solution z(¢) on [0, 4+00), and z(t) satisfies the following Volterra fractional integral

equation

_ L ! _5)" /2 z(s) s
(5.2) x(t)—l—&-ﬁ/o(t ) 14_\/§d.

Suppose that z(t) is a bounded function on [0, +00). Since x(t) is a nondecreasing continuous

solution on [0, +00), then lim;_, 1 o, 2(¢) exists. Hence, using Lemma 2.2, we obtain
I x(s)
li )= lim [1+— [ (t—s) /?—"d
(5.3) A0 = I { T E /0 A Y
=1+ ﬁtilgloo:c(t)

and limy_, o z(t) = 171\/? This contradicts the fact that lim;, . xz(t) > 0. Hence, the

fractional differential equation (5.1) has a unique nondecreasing unbounded solution on [0, +00).

Example 5.2. Consider the following Caputo fractional differential equation

DY a(t) = 20 t € (0, +00),

. 1+t
65 z(0) = 1. ’

Using Theorem 4.1, we get that the fractional differential equation (5.4) has at least one

nondecreasing solution = € C;[0, +00) and lim;_, oo z(t) = (ﬁ% yrtd)2,

Example 5.3. Consider the following Caputo fractional differential equation

DY?x(t) = Y2 e (0,400),
z(0) = 1.

(5.5)
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We know

Vi _VEETL V4V _ ot Vit
1+t~ 14+4¢ — 14t — 1+¢
for all ¢ € (0,+00) and z € [0,+00). Using Theorem 4.3, then we obtain that the fractional

differential equation (5.5) has at least one bounded solution x € C[0, +00) and lim;—, o0 2(t) =

1+ /7.

Example 5.4. Consider the following Caputo fractional differential equation

56) Da(t) = BEEEOL e (0,400),
z(0) = 1.
Since

In(1 + tx) tx
I+62 — 14142
for all ¢ € [0,+00) and = € [0,400), and by Theorem 4.4, then we obtain that the fractional

differential equation (5.6) has at least one bounded solution z € Cf [0, +00) and lim;—, o0 2(t) =

1.
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