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1. Introduction

The investigation of the properties of solutions for fractional differential equations has recent-

ly received a lot of attention. For example, Medved [19] proved that all solutions of fractional

differential equation with the Caputo derivative are asymptotic to a+ bt as t → +∞. Diethelm

et al. [9] gave characteristics regarding the asymptotic behavior of solutions to some classes

of linear multi-order fractional differential equation systems. Grace and Zafer [10] studied the

asymptotic behavior of nonoscillatory solutions of fractional differential equations. Ahmad et

al. [3] studied the asymptotic behavior of solutions for a general class of fractional integro-

differential equations. Ponce [21] obtained properties on the behavior of mild solutions to

abstract fractional Cauchy problems for the Caputo and Riemann-Liouville fractional deriva-

tives. Cong et al. [6] presented some distinct asymptotic properties of solutions to Caputo

fractional differential equations. Kassim and Tatar [13] studied the asymptotic behavior of

solutions of fractional differential equations with Hadamard fractional derivatives. Wang et al.

[23] studied the long-term behavior of time fractional neutral functional differential equations.
1
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Zhu [27] proved that all solutions of Riemann-Liouville fractional differential equation are at-

tractive. Ky [16] devoted to discuss the asymptotic behavior of solutions to various classes of

two-term fractional differential equations. Zhu [28] presented that Riemann-Liouville fractional

differential equation has at least one globally attractive solution and x(t) = x0t
β−1 + o(tβ−γ1)

as t → +∞.

Choi and Koo [5] proved that the solutions of the following Caputo fractional differential

equation

Dβ
Cx(t) = λx(t), β ∈ (0, 1), t ≥ t0

are nondecreasing in t, where λ ≥ 0. Recently, Goodrich and Lizama [11] considered the

following fractional differential equation

(1.1)

{
Dβ

Cx(t) = f(t, x(t)), β ∈ (1, 2), t ∈ [0,+∞)

x(0) = 0, x′(0) ≥ 0.

They proved that all solutions of the equation (1.1) are nondecreasing whenever f(t, x) ≥ 0

for all t ≥ 0 and x ∈ R. Goodrich and Lizama [12] considered the existence of positive and

nonincreasing solutions for the following boundary value problem

(1.2)

{
Dβ

Cx(t) + λf(t, x(t)) = 0, β ∈ (1, 2), t ∈ (0, 1)

x′(0) = 0, x(1) = T.

where λ and T are nonnegative constants. Zhu [29] investigated the following Riemann-Liouville

fractional differential equation

(1.3)

{
Dβx(t) = l(t)ϕ(x(t)) + k(t), β ∈ (0, 1), t ∈ (0,+∞)

limt→0+ t1−βx(t) = x0.

Zhu presented that the equation (1.3) has at least one decreasing solution in C+
1−β(0,+∞),

Zhu also studied the asymptotic behavior of solution of the equation (1.3) under some different

conditions.

In this paper, we first study the boundedness and monotonicity of solution of the following

Caputo fractional differential equation

(1.4)

{
Dβ

Cx(t) = f(t, x(t)), β ∈ (0, 1), t ∈ (0,+∞)

x(0) = x0.

By the Schauder fixed point theorem, we prove that the equation (1.4) has at least one non-

negative, bounded and nondecreasing continuous solution on [0,+∞). Using the boundedness

of solution, we obtain the asymptotic behavior of solution of the equation (1.4). We also in-

vestigate the asymptotic behavior of solution of the following Caputo fractional differential

equation

(1.5)

{
Dβ

Cx(t) = l(t)φ(x(t)) + k(t), β ∈ (0, 1), t ∈ (0,+∞)

x(0) = x0.

We prove that the equation (1.5) has at least one nondecreasing solution x ∈ C+
0 [0,+∞) and

converges asymptotically to a constant as t → +∞. To the best of our knowledge, there have
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been few papers to study the monotonicity and asymptotic behavior of the Caputo fractional

differential equations. The results and the methods of the proof in this paper seem to be new.

The outline of this paper is as follows. In Section 2, we introduce some notations, definitions

and theorems needed in our proofs. Some new results about the fractional integral functions, and

the equivalence between the Caputo fractional differential equation and the Volterra fractional

integral equation are also proved in this section. In Section 3, we give some sufficient conditions

on f for the boundedness and monotonicity of solution of fractional differential equation (1.4).

In Section 4, we investigate the asymptotic behavior of solution of Caputo fractional differential

equation (1.5). We proved that the nondecreasing solution of the equation (1.5) converges

asymptotically to a constant as t → +∞. We also give the the asymptotic behavior of solution

of the equation (1.4) by using the boundedness of solution. In the last Section, we will give

some examples to illustrate our results.

2. preliminaries

In this section, we first introduce some notations and definitions which will be needed later.

Some new results of fractional integral functions are also discussed in this section. At last

we give the equivalence between the Caputo fractional differential equation and the Volterra

integral equation when f is continuous on (0,+∞)× R.

We denote by C+[0, 1] = {x : x ∈ C[0, 1] and x(t) ≥ 0 for all t ∈ [0, 1]} and C+[0,+∞) =

{x : x ∈ C[0,+∞) and x(t) ≥ 0 for all t ∈ [0,+∞)}. Let C1(0,+∞) = {x : x′ ∈ C(0,+∞) for

all t ∈ (0,+∞)}. Let C+
∗ [0,+∞) = {x : x ∈ C+[0,+∞) and x(t) is a nondecreasing function

on [0,+∞)}. Let C+
0 [0,+∞) = {x : x ∈ C+[0,+∞) and sup0≤t<+∞ x(t) is finite }. It is

known that C+
0 [0,+∞) is a Banach space with the norm ∥x∥ = sup0≤t<+∞ x(t). A family

U ⊂ C+[0,+∞) is relatively compact if and only if for each T > 0 the restriction to [0, T ] of

all functions from U forms an equicontinuous and uniformly bounded set. A sequence xn is

convergent to x in C+[0,+∞) if and only if xn is uniformly convergent to x on compact subsets

of [0,+∞). Lp
loc[0,+∞) (p ≥ 1) is the space of all real valued functions f for which |f |p is

Lebesgue integrable over every bounded subinterval of [0,+∞). For p, q > 0, the Beta function

is defined by

B(p, q) =

∫ 1

0

(1− s)p−1sq−1ds.

It is well known that B(p, q) = Γ(p)Γ(q)
Γ(p+q) , where Γ is the Gamma function and

Γ(p) =

∫ +∞

0

sp−1 exp(−s)ds.

From the Beta function, we can get∫ t

0

(t− s)p−1sq−1ds =
Γ(p)Γ(q)

Γ(p+ q)
tp+q−1, t > 0.
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For β ∈ (0, 1), the Riemann-Liouville fractional integral of order β is defined by

Iβρ(t) =
1

Γ(β)

∫ t

0

ρ(s)

(t− s)1−β
ds,

where ρ ∈ L1[0, T ]. The Riemann-Liouville fractional derivative Dβρ is defined by

Dβρ(t) =
d

dt
I1−βρ(t) =

1

Γ(1− β)

d

dt

∫ t

0

ρ(s)

(t− s)β
ds, a.e. t ∈ [0, T ].

where I1−βρ is an absolutely continuous (AC) function on [0, T ]. If ρ(0) exists and I1−βρ ∈

AC[0, T ], then the Caputo fractional derivative Dβ
Cρ is defined by

Dβ
Cρ(t) = Dβ(ρ(t)− ρ(0)).

From Theorem 2.1 in [15], If ρ ∈ AC[0, T ], then we can get

Dβ
Cρ(t) =

1

Γ(1− β)

∫ t

0

ρ′(s)

(t− s)β
ds, a.e. t ∈ [0, T ].

For more details about fractional calculus, we refer the reader to the texts [8, 15, 20, 22].

Now, we present some recent results of the following fractional integral function

y(t) =

∫ t

0

(t− s)β−1ρ(s)ds.

In [7], if ρ ∈ Cα[0,+∞) with 0 ≤ α < β < 1, then y(t) is continuous on [0,+∞) and y(0) =

0. In [2], Agarwal et al. proved that y(t) is continuous on [0, 1] when ρ ∈ Lp[0, 1], where

p > 1/β. Becker et al. [4] proved that y(t) is continuous on (0, 1] when ρ ∈ C(0, 1] ∩ L1[0, 1].

Zhu [28] proved that y(t) is continuous on (0, 1] and t1−βy(t) is continuous on [0, 1] when∫ 1

0
sp(1−β)|ρ(s)|pds exists, where p > 1/β.

Lemma 2.1. [29] Let 0 < β < 1, and suppose that ρ ∈ C(0,+∞) ∩ L1
loc[0,+∞). Then

lim
t→+∞

∫ t

0

(t− s)β−1ρ(s)ds = 0

when limt→+∞ tβρ(t) = 0.

Lemma 2.2. [29] Let 0 < β < 1, and suppose that ρ ∈ C(0,+∞) ∩ L1
loc[0,+∞). Then

lim
t→+∞

∫ t

0

(t− s)β−1ρ(s)ds =
aπ

sin(βπ)

when limt→+∞ tβρ(t) = a.

Lemma 2.3. Let 0 < β < 1. Suppose that ρ ∈ Lp
loc[0,+∞), where p > 1/β. Then∣∣∣∣∫ t

0

(t− s)β−1ρ(s)ds

∣∣∣∣ ≤ Γ1/q

(
pβ − 1

p− 1

)
Γ1/q

(
p− pβ

p− 1

)(∫ t

0

spβ−1|ρ(s)|pds
)1/p

,

where q = p
p−1 .
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Proof. Using the Hölder inequality, we have∣∣∣∣∫ t

0

(t− s)β−1ρ(s)ds

∣∣∣∣ ≤ ∫ t

0

(t− s)β−1s1/p−βsβ−1/p|ρ(s)|ds

≤
(∫ t

0

(t− s)q(β−1)sq−qβ−1ds

)1/q (∫ t

0

spβ−1|ρ(s)|pds
)1/p

≤ Γ1/q

(
pβ − 1

p− 1

)
Γ1/q

(
p− pβ

p− 1

)(∫ t

0

spβ−1|ρ(s)|pds
)1/p

.

(2.1)

�

Lemma 2.4. Let 0 < β < 1. Suppose that ρ ∈ Lp
loc[0,+∞), where p > 1/β, and there exists a

nonnegative constant K such that |tβρ(t)| ≤ K for t ∈ [1,+∞). Then

y(t) =

∫ t

0

(t− s)β−1ρ(s)ds

is a continuous and bounded function on [0,+∞).

Proof. Since ρ ∈ Lp
loc[0,+∞), using Lemma 2.2 in [2], then we get that y(t) is a continuous

function on [0,+∞). We only need to prove that |y(t)| is finite for t ∈ [1,+∞). For t ≥ 1, we

have

(2.2) y(t) =

∫ 1

0

(t− s)β−1ρ(s)ds+

∫ t

1

(t− s)β−1ρ(s)ds.

Using Lemma 2.3, we get∣∣∣∣∫ 1

0

(t− s)β−1ρ(s)ds

∣∣∣∣ ≤ ∫ 1

0

(1− s)β−1|ρ(s)|ds

≤ Γ1/q

(
pβ − 1

p− 1

)
Γ1/q

(
p− pβ

p− 1

)(∫ 1

0

spβ−1|ρ(s)|pds
)1/p

.

(2.3)

For t ≥ 1, we have ∣∣∣∣∫ t

1

(t− s)β−1ρ(s)ds

∣∣∣∣ ≤ ∫ t

1

(t− s)β−1Ks−βds

≤ K

∫ t

0

(t− s)β−1s−βds

= KΓ(β)Γ(1− β)

=
Kπ

sin(βπ)
.

(2.4)

From (2.3) and (2.4), we get that |y(t)| is finite for t ∈ [1,+∞). Therefore, y(t) is a bounded

function on [0,+∞). �

Lemma 2.5. Let 0 < β < γ < 1. Suppose that ρ ∈ Lp
loc[0,+∞), where p > 1/β, and there

exists a nonnegative constant K such that |tγρ(t)| ≤ K for t ∈ [1,+∞). Then

y(t) =

∫ t

0

(t− s)β−1ρ(s)ds

is a continuous and bounded function on [0,+∞) and limt→+∞ y(t) = 0.
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Proof. For t ∈ [1,+∞), we know that

(2.5) |tβρ(t)| = |tβ−γtγρ(t)| ≤ Ktβ−γ ≤ K.

From Lemma 2.4, we get that y(t) is a continuous and bounded function on [0,+∞). Since

β < γ, from (2.5), we get limt→+∞ tβρ(t) = 0. Using Lemma 2.1, we have limt→+∞ y(t) = 0. �

Lemma 2.6. Let t0 ≥ 0 and 0 < β < 1. If ρ ∈ C(t0,+∞) ∩ L1
loc[t0,+∞). Then

h(t) =

∫ t

t0

(t− s)β−1ρ(s)ds

is continuous on (t0,+∞).

Proof. Let s = u+ t0. Then we get

h(t) =

∫ t

t0

(t− s)β−1ρ(s)ds =

∫ t−t0

0

(t− t0 − u)β−1ρ(u+ t0)du.

Let ρ0(t) = ρ(t+ t0) for t > 0, we have

h(t) =

∫ t−t0

0

(t− t0 − u)β−1ρ0(u)du.

Since ρ ∈ C(t0,+∞) ∩ L1
loc[t0,+∞), then ρ0 ∈ C(0,+∞) ∩ L1

loc[0,+∞), and using Lemma 4.6

in [4], we get that

y(t) =

∫ t

0

(t− u)β−1ρ0(u)du

is continuous on (0,+∞). Therefore, we get that h(t) = y(t− t0) is continuous on (t0,+∞). �

Lemma 2.7. [24] Let 0 ≤ t0 < t and 0 < β, γ < 1. Then for t > t0 we have∫ t

t0

(t− s)−β(s− t0)
−γds = (t− t0)

1−β−γB(1− β, 1− γ).

Lemma 2.8. Let t0 ≥ 0 and 0 < β < 1. Suppose that ρ ∈ C(t0,+∞) ∩ L1
loc[t0,+∞). If

(t− t0)
βρ(t) is a nonincreasing (nondecreasing) function on (t0,+∞), then

h(t) =

∫ t

t0

(t− s)β−1ρ(s)ds

is a nonincreasing (nondecreasing) function on (t0,+∞).

Proof. Using Lemma 2.6, we get that h(t) is a continuous function on (t0,+∞). Let t0 < t1 <

t2 < +∞. Since (t − t0)
βρ(t) is a nonincreasing function on (t0,+∞), and using Lemma 2.7,
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then we have

h(t2)− h(t1)

=

∫ t2

t1

(t2 − s)β−1ρ(s)ds

+

∫ t1

t0

(t2 − s)β−1ρ(s)ds−
∫ t1

t0

(t1 − s)β−1ρ(s)ds

=

∫ t2

t1

(t2 − s)β−1(s− t0)
−β(s− t0)

βρ(s)ds

+

∫ t1

t0

[
(t2 − s)β−1 − (t1 − s)β−1

]
(s− t0)

−β(s− t0)
βρ(s)ds

≤
∫ t2

t1

(t2 − s)β−1(s− t0)
−β(t1 − t0)

βρ(t1)ds

+

∫ t1

t0

[
(t2 − s)β−1 − (t1 − s)β−1

]
(s− t0)

−β(t1 − t0)
βρ(t1)ds

= (t1 − t0)
βρ(t1)

[∫ t2

t0

(t2 − s)β−1(s− t0)
−βds−

∫ t1

t0

(t1 − s)β−1(s− t0)
−βds

]
= (t1 − t0)

βρ(t1) [B(β, 1− β)−B(β, 1− β)]

= 0.

(2.6)

Then we get that h(t) is a nonincreasing function on (t0,+∞).

Using the same procedure as in the proof of (2.6), we can also obtain that h(t) is a nonde-

creasing function on (t0,+∞) when (t− t0)
βρ(t) is a nondecreasing function on (t0,+∞). �

Remark 2.9. In [29], if ρ ∈ C(0,+∞)∩L1
loc[0,+∞), then y(t) is a nonincreasing (nondecreasing)

function on (0,+∞) when tβρ(t) is a nonincreasing (nondecreasing) function on (0,+∞). In

Lemma 2.8, we can immediately obtain the result in [29] when t0 = 0. The proof in this paper

is significantly different from the proof of Lemma 2.6 in [29].

Now, we will give two examples to illustrate the applicability of the Lemma 2.8. For example,

let

h(t) =

∫ t

1

(t− s)−1/2

√
s2 − 1

ds,

we know that ρ(t) = 1√
t2−1

is a nonincreasing function on (1,+∞), and
√
t− 1ρ(t) = 1√

t+1
is

a nonincreasing function on (1,+∞). Using Lemma 2.8, we get that h(t) is a nonincreasing

function on (1,+∞), and

h(t) ≤
∫ t

1

(t− s)−1/2(s− 1)−1/2ds = B(1/2, 1/2) = π, t ∈ (1,+∞).

Let

h(t) =

∫ t

1

(t− s)−1/2

√
s

s− 1
ds,

we know that ρ(t) =
√

t
t−1 is a nonincreasing function on (1,+∞), and

√
t− 1ρ(t) =

√
t is

a nondecreasing function on (1,+∞). By Lemma 2.8, we obtain that h(t) is a nondecreasing
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function on (1,+∞), and

h(t) ≥
∫ t

1

(t− s)−1/2ds = 2
√
t− 1 → +∞

as t → +∞.

In [4, Lemma 4.8], Becker et al. obtained the following result of fractional integral operator.

Lemma 2.10. [4] Let ρ ∈ C(0, T ] ∩ L1[0, T ]. Let β, γ > 0 with β + γ ≥ 1. Then

Iβ+γρ(t) =
1

Γ(β + γ)

∫ t

0

ρ(s)

(t− s)1−β−γ
ds

is continuous on [0, T ]. Moreover,

Iβ+γρ(t) = IβIγρ(t)

at each t ∈ [0, T ].

In [25, Proposition 3.2], If 0 < α ≤ β < 1 (or if α = 0 and 0 < β < 1) and u′ ∈ Cα then

Iβu ∈ C1[0, T ] if and only if u(0) = 0. However, Iβ does not map C1[0, T ] into C1[0, T ] in

general. Using Lemma 2.10, we can obtain the following result.

Lemma 2.11. (1). If ρ ∈ IβW , where W = C(0,+∞)∩L1
loc[0,+∞), then I1−βρ ∈ C1(0,+∞).

(2). If ρ ∈ C[0,+∞) and ρ′ ∈ C(0,+∞) ∩ L1
loc[0,+∞), then I1−βρ ∈ C1(0,+∞).

Proof. (1). Let ρ = Iβv, where v ∈ W . Then using Lemma 2.10, we have

I1−βρ = I1−βIβv = Iv.

Since v ∈ W , then we have I1−βρ ∈ C1(0,+∞) and (I1−βρ)′ = v.

(2). Since ρ ∈ C[0,+∞) and ρ′ ∈ C(0,+∞) ∩ L1
loc[0,+∞), then using Lemma 2.10, we get

I1−βρ = I1−β(Iρ′ + ρ(0)) = I1−βIρ′ +
ρ(0)t1−β

Γ(2− β)
= II1−βρ′ +

ρ(0)t1−β

Γ(2− β)
.

Then I1−βρ ∈ C1(0,+∞) and (I1−βρ)′ = I1−βρ′ + ρ(0)t−β

Γ(1−β) .

�

In [24, Theorem 4.6], Webb gave an equivalence for a Caputo fractional differential equation

and an integral equation when the nonlinearity is of the form t−γf . The case when there is

no singular term t−γ is essentially well known, for example, see Diethelm [8, Lemma 6.2] and

Kilbas and Marzan [14, Theorem 1]. Recently, Lan and Webb [18] obtained the following result

when f ∈ Lp for some p > 1/β. This result is very similar to Theorem 4.2 in [17].

Theorem 2.12. [18, Lemma 4] Let 0 < β < 1 and suppose that f ∈ Lp for some p > 1/β.

Then the following assertions are equivalent.

(1) u ∈ C[0, T ] satisfies

(2.7) u(t) = u0 + Iβf(t)

for each t ∈ [0, T ].
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(2) u ∈ C[0, T ], and I1−βu ∈ AC, and u is a solution of the following Caputo fractional

initial value problem

(2.8)

{
Dβ

Cu(t) = f(t),

u(0) = u0

for a.e. t ∈ (0, T ].

We now give the equivalence between the Caputo fractional differential equation and the

Volterra integral equation when f is continuous on (0,+∞)× R.

Theorem 2.13. Let 0 < β < 1 and p > 1/β, let f be continuous on (0,+∞) × R, and

g ∈ Lp
Loc[0,+∞) for every x ∈ C[0,+∞), where g(t) = f(t, x(t)). If x ∈ C[0, T ] and I1−βx ∈

C1(0,+∞), and x satisfies the following Caputo fractional initial value problem

(2.9)

{
Dβ

Cx(t) = f(t, x(t)), t ∈ (0,+∞),

x(0) = x0.

Then x satisfies the following Volterra integral equation

(2.10) x(t) = x0 +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds, t ∈ [0,+∞).

If x ∈ C[0, T ] satisfies the equation (2.10), then x satisfies the equation (2.9).

Proof. If x ∈ C[0, T ] and I1−βx ∈ C1(0,+∞), suppose that x satisfies the equation (2.9). For

t ∈ (0,+∞), we get

Dβ
Cx(t) = Dβ(x(t)− x(0))

= DI1−β(x(t)− x0)

= f(t, x(t)).

(2.11)

An integration of (2.11) yields

I1−β(x(t)− x0) = If(t, x(t)).

Using Lemma 2.10, we get

I(x(t)− x0) = I1+βf(t, x(t)) = IIβf(t, x(t)).(2.12)

Differentiating (2.12), we obtain

x(t)− x0 = Iβf(t, x(t)), t ∈ (0,+∞).(2.13)

Since g ∈ Lp
Loc[0,+∞), using Lemma 2.1 in [2], then we get

lim
t→0+

Iβf(t, x(t)) = lim
t→0+

1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds = 0.

Together with the equality (2.13), then we deduce that

x(t) = x0 + Iβf(t, x(t)), t ∈ [0,+∞).

If x ∈ C[0, T ] satisfies the equation (2.10), since g ∈ Lp
loc[0,+∞), then we get

lim
t→0+

∫ t

0

(t− s)β−1f(s, x(s))ds = 0.
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From equality (2.10), then we get x(0) = x0. For t ∈ (0,+∞), using Lemma 2.10 and Lemma

2.11, we have

Dβ
Cx(t) = Dβ(x(t)− x(0))

= DI1−β(x(t)− x0)

= DI1−βIβ(f(t, x(t))

= DI(f(t, x(t))

= f(t, x(t)).

(2.14)

Hence, x satisfies the equation (2.9). �

In [26, Theorem 2.4], using the Hölder inequality, Zhu obtained the following fractional

integral inequality.

Theorem 2.14. Let 0 < T ≤ +∞ and 0 < α < β < 1, a(t) and l(t) are continuous, nonnegative

functions on [0, T ). Let x(t) be a continuous, nonnegative function on [0, T ) with

x(t) ≤ a(t) +
1

Γ(β)

∫ t

0

(t− s)β−1l(s)x(s)ds.

Then

(2.15) x(t) ≤
(
A(t) +

∫ t

0

L(s)A(s) exp

(∫ t

s

L(τ)dτ

)
ds

)α

t ∈ [0, T ).

If a(t) is a nondecreasing function on [0, T ), then the inequality (2.15) is reduced to

x(t) ≤
(
A(t) exp

(∫ t

0

L(s)ds

))α

,

where A(t) = 21/α−1a1/α(t) and L(t) = 21/α−1

Γ1/α(β)

(
Γ(β−α

1−α )Γ(
1−β
1−α )

)1/α−1

tβ/α−1l1/α(t).

Let α = 1/p in Theorem 2.14 and using the same proof of Theorem 2.14, we can obtain the

following result.

Theorem 2.15. Let 0 < β < 1, let a ∈ C+[0,+∞) and l ∈ C+(0,+∞) ∩ Lp
loc[0,+∞), where

p > 1/β. Let x(t) be a continuous, nonnegative function on [0,+∞) with

x(t) ≤ a(t) +
1

Γ(β)

∫ t

0

(t− s)β−1l(s)x(s)ds.

Then

(2.16) x(t) ≤
(
A(t) +

∫ t

0

L(s)A(s) exp

(∫ t

s

L(τ)dτ

)
ds

)1/p

t ∈ [0,+∞).

If a(t) is a nondecreasing function on [0,+∞), then the inequality (2.16) is reduced to

x(t) ≤
(
A(t) exp

(∫ t

0

L(s)ds

))1/p

,

where A(t) = 2p−1ap(t) and L(t) = 2p−1

Γp(β)

(
Γ(pβ−1

p−1 )Γ(p−pβ
p−1 )

)p−1

tpβ−1lp(t).

Finally, the following fixed point theorems will be needed in the proof of the main results of

this paper.
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Theorem 2.16. [1] If C is a nonempty, closed, convex and bounded subset of a Banach space

E, and F : C → C is a continuous and completely continuous map. Then F has a fixed point

in C.

Theorem 2.17. [1] Let E be a Banach space, C a closed, convex subset of E and 0 ∈ C. Let

F : C → C be a continuous and completely continuous map. Define

(2.17) E(F ) = {x ∈ C : x = λF (x) for some λ ∈ (0, 1)}.

Then either E(F ) is unbounded or F has a fixed point.

3. boundedness and monotonicity of fractional differential equations

In this section, we study the boundedness and monotonicity of solution of the fractional

differential equation (1.4). We first show that the fractional differential equation (1.4) has at

least one nonnegative, nondecreasing and continuous solution on [0,+∞).

Theorem 3.1. Let x0 ≥ 0 and p > 1/β. Let f : (0,+∞) × [0,+∞) → [0,+∞) be continu-

ous, if g(t) = tβf(t, x(t)) is a nondecreasing function on (0,+∞) when x(t) is a nonnegative,

nondecreasing continuous function on [0,+∞). Suppose there are two nonnegative functions

l, k ∈ C(0,+∞) ∩ Lp
loc[0,+∞) such that

(3.1) f(t, u) ≤ l(t)u+ k(t)

for all t ∈ (0,+∞) and u ∈ [0,+∞). Then the fractional differential equation (1.4) has at least

one nonnegative, nondecreasing and continuous solution on [0,+∞).

Proof. For any T > 0, we first show that the fractional differential equation (1.4) has at least

one solution x ∈ C+
∗ [0, T ]. Let us define the operator F by the formula

(3.2) (Fx)(t) = x0 +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds.

Step 1. We first prove Fx ∈ C+
∗ [0, T ] when x ∈ C+

∗ [0, T ]. Since x0 ≥ 0 and f(t, x(t)) is a

nonnegative function, then we get that Fx is a nonnegative function on [0, T ]. Since x(t) and

g(t) are nondecreasing functions, using Lemma 2.8, we get that Fx is a nondecreasing function.

Since l, k ∈ C(0,+∞)∩Lp
Loc[0,+∞), using (3.1), then we get that Fx is a continuous function

on [0, T ]. Hence, Fx ∈ C+
∗ [0, T ] when x ∈ C+

∗ [0, T ].

Step 2. Now, we prove that the operator F is a compact operator. Let U ∈ C+
∗ [0, T ] and

∥x∥ ≤ R for any x ∈ U , where R > 0. We only need to prove that F (U) is uniformly bounded

and equicontinuous on [0, T ]. From (3.1), we get f(t, x(t)) ≤ Rl(t)+k(t) for every x ∈ U . Using

the same procedure as in Lemma 2.1 in [2], we get that F (U) is equicontinuous on [0, T ]. Let
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x ∈ U . Using Lemma 2.3, we have

(Fx)(t) ≤ x0 +
1

Γ(β)

∫ t

0

(t− s)β−1[l(s)x(s) + k(s)]ds

≤ x0 +
R

Γ(β)

∫ t

0

(t− s)β−1l(s)ds+
1

Γ(β)

∫ t

0

(t− s)β−1k(s)ds

≤ x0 +
MR

Γ(β)

(∫ t

0

spβ−1lp(s)ds

)1/p

+
M

Γ(β)

(∫ t

0

spβ−1kp(s)ds

)1/p

≤ x0 +
MR

Γ(β)

(∫ T

0

spβ−1lp(s)ds

)1/p

+
M

Γ(β)

(∫ T

0

spβ−1kp(s)ds

)1/p

,

(3.3)

where M = Γ1/q
(

pβ−1
p−1

)
Γ1/q

(
p−pβ
p−1

)
. This proves that the set F (U) is bounded. By Ascoli-

Arzela theorem, we know that FU is relatively compact. Therefore, the operator F is a compact

operator.

Step 3. We show that F is continuous, that is xn → x implies Fxn → Fx. Since xn → x,

let ∥xn∥, ∥x∥ ≤ R, then we have

(3.4) (t− s)β−1 |f(s, xn(s))− f(s, x(s))| ≤ 2(t− s)β−1(Rl(s) + k(s)).

Since l, k ∈ Lp[0, T ], from Lemma 2.3, we know that
∫ t

0
(t− s)β−1(Rl(s) + k(s))ds exists for all

t ∈ (0, T ]. For every s ∈ (0, t), we know

(3.5) (t− s)β−1f(s, xn(s)) → (t− s)β−1f(s, x(s))

as n → +∞. From (3.4) and (3.5), using the Lebesgue dominated convergence theorem, then

we have

|(Fxn)(t)− (Fx)(t)| = 1

Γ(β)

∣∣∣∣∫ t

0

(t− s)β−1[f(s, xn(s))− f(s, x(s))]ds

∣∣∣∣→ 0

as n → +∞. Therefore, (Fxn)(t) → (Fx)(t) pointwise on [0, T ] as n → +∞. With the fact

that F is a compact operator, then we get that ∥Fxn − Fx∥ → 0 as n → +∞, which implies

the map F is continuous.

Step 4. If x ∈ C+
∗ [0, T ] is any solution of

(3.6) x(t) = λ

(
x0 +

1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds

)
,

where 0 < λ < 1, then we have

x(t) ≤ x0 +
1

Γ(β)

∫ t

0

(t− s)β−1l(s)x(s)ds+
1

Γ(β)

∫ t

0

(t− s)β−1k(s)ds

≤ x0 +
M

Γ(β)

(∫ T

0

spβ−1kp(s)ds

)1/p

+
1

Γ(β)

∫ t

0

(t− s)β−1l(s)x(s)ds.

(3.7)

Using Theorem 2.15, we get

x(t) ≤ 2

x0 +
M

Γ(β)

(∫ T

0

spβ−1kp(s)ds

)1/p
 exp

(∫ T

0

L(s)

p
ds

)
, t ∈ [0, T ],

where L(t) = 2p−1

Γp(β) (Γ(
pβ−1
p−1 )Γ(p−pβ

p−1 ))p−1tpβ−1lp(t) and p > 1/β. Therefore, x(t) is a bounded

function on [0, T ].
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Finally, applying fixed point theorem 2.17, we get that there exists a function x ∈ C+
∗ [0, T ]

such that Fx = x. From Theorem 2.13, we know that the function x is also a solution of the

fractional differential equation (1.4).

Since T can be chosen arbitrarily large, then we know that the fractional differential equation

(1.4) has at least one solution in C+
∗ [0,+∞). Thus, we complete the proof. �

Now, we begin to study the boundedness of solutions of Caputo fractional differential equa-

tion (1.4). We first discuss the boundedness of the equation (1.4) when f(t, u) ≤ l(t)uµ + k(t),

where 0 ≤ µ < 1.

Theorem 3.2. Let x0 ≥ 0, 0 ≤ µ < 1 and p > 1/β. Let f : (0,+∞) × [0,+∞) → [0,+∞) be

continuous. Suppose there are two nonnegative functions l, k ∈ C(0,+∞) ∩ Lp
loc[0,+∞), and

there exists a nonnegative constant K such that tβl(t) ≤ K and tβk(t) ≤ K for t ∈ [1,+∞). If

f satisfies the following condition

(3.8) f(t, u) ≤ l(t)uµ + k(t)

for all t ∈ (0,+∞) and u ∈ [0,+∞). Then the fractional differential equation (1.4) has at least

one nonnegative bounded solution on [0,+∞).

Proof. Let us define the operator F by the formula

(3.9) (Fx)(t) = x0 +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds,

where x ∈ C+
0 [0,+∞). Since tβl(t), tβk(t) ≤ K for t ∈ [1,+∞), using Lemma 2.4, then there

exist two nonnegative constants M1,M2 such that M1 = sup0≤t<+∞
1

Γ(β)

∫ t

0
(t−s)β−1l(s)ds and

M2 = sup0≤t<+∞
1

Γ(β)

∫ t

0
(t− s)β−1k(s)ds. Let R > 0 sufficiently large such that

(3.10) x0 +M1R
µ +M2 ≤ R,

where 0 ≤ µ < 1. We define the subset UR of C+
0 [0,+∞) as follows

(3.11) UR =

{
x : x ∈ C+

0 [0,+∞) and ∥x∥ = sup
0≤t<+∞

x(t) ≤ R

}
.

The set UR is nonempty, convex, closed and bounded in C+
0 [0,+∞).

We can easily obtain that Fx is a nonnegative continuous function on [0,+∞) when x ∈

C+
0 [0,+∞). If x ∈ UR, then we have

(Fx)(t) ≤ x0 +
1

Γ(β)

∫ t

0

(t− s)β−1[l(s)xµ(s) + k(s)]ds

≤ x0 +M1R
µ +M2

≤ R.

(3.12)

Therefore, Fx ∈ UR when x ∈ UR.

For any T > 0, using the same procedure as in the proof of Theorem 3.1, we know that

F : C+[0, T ] → C+[0, T ] is a a continuous and completely continuous map. Therefore, F :
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C+
0 [0,+∞) → C+

0 [0,+∞) is a continuous and completely continuous map. Using Theorem

2.16 and Theorem 2.13, we get that the fractional differential equation (1.4) has at least one

solution in C+
0 [0,+∞). �

Next, we will give the boundedness of Caputo fractional differential equation (1.4) for the

case µ = 1.

Theorem 3.3. Let x0 ≥ 0, 0 < β < γ < 1 and p > 1/β. Let f : (0,+∞)× [0,+∞) → [0,+∞)

be continuous. Suppose there are two nonnegative functions l, k ∈ C(0,+∞)∩Lp
loc[0,+∞), and

there exists a nonnegative constant K such that tγ l(t) ≤ K and tβk(t) ≤ K for t ∈ [1,+∞). If

f satisfies the following condition

(3.13) f(t, u) ≤ l(t)u+ k(t)

for all t ∈ (0,+∞) and u ∈ [0,+∞). Then the fractional differential equation (1.4) has at least

one nonnegative bounded solution on [0,+∞).

Proof. If x ∈ C+
0 [0,+∞) and let R = sup0≤t<+∞ x(t), then we have

(Fx)(t) ≤ x0 +
1

Γ(β)

∫ t

0

(t− s)β−1[l(s)x(s) + k(s)]ds

≤ x0 +
R

Γ(β)

∫ t

0

(t− s)β−1l(s)ds+
1

Γ(β)

∫ t

0

(t− s)β−1k(s)ds

≤ x0 +M1R+M2.

(3.14)

where M1,M2 are as defined in Theorem 3.2. Then we get Fx ∈ C+
0 [0,+∞) when x ∈

C+
0 [0,+∞). Similar to the proof of the Theorem 3.2, we can get that F : C+

0 [0,+∞) →

C+
0 [0,+∞) is a continuous and completely continuous map.

If x ∈ C+
0 [0,+∞) is any solution of

(3.15) x(t) = λ

(
x0 +

1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds

)
,

where 0 < λ < 1, then we have

x(t) ≤ x0 +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds

≤ x0 +
1

Γ(β)

∫ t

0

(t− s)β−1l(s)x(s)ds+
1

Γ(β)

∫ t

0

(t− s)β−1k(s)ds

≤ x0 +M2 +
1

Γ(β)

∫ t

0

(t− s)β−1l(s)x(s)ds.

(3.16)

Using Theorem 2.15, then we have

x(t) ≤ 2(x0 +M2) exp

(∫ t

0

L(s)

p
ds

)
,

where L(t) = 2p−1

Γp(β)

(
Γ(pβ−1

p−1 )Γ(p−pβ
p−1 )

)p−1

tpβ−1lp(t) and p > 1/β. Since 0 < β < γ < 1 and

tγ l(t) ≤ K for t ∈ [1,+∞), then we get that tpβ−1lp(t) ≤ Kptpβ−pγ−1 for t ∈ [1,+∞), and
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the integral
∫ +∞
1

spβ−1lp(s)ds is convergent. Consequently, we obtain that
∫ +∞
0

spβ−1lp(s)ds

is convergent. Therefore, we get that
∫ +∞
0

L(s)ds is finite, and

x(t) ≤ 2(x0 +M2) exp

(∫ +∞

0

L(s)

p
ds

)
, t ∈ [0,+∞).

This proves that any solution of the equation (3.15) is a bounded function on [0,+∞).

Using Theorem 2.17 and Theorem 2.13, we get that the fractional differential equation (1.4)

has at least one solution in C+
0 [0,+∞). �

From Theorem 3.1 and Theorem 3.2, we can immediately obtain the following result.

Theorem 3.4. Let x0 ≥ 0, 0 ≤ µ < 1 and p > 1/β. Let f : (0,+∞) × [0,+∞) → [0,+∞)

be continuous, if g(t) = tβf(t, x(t)) is a nondecreasing function on (0,+∞) when x(t) is a

nonnegative, nondecreasing continuous function on [0,+∞). Suppose there are two nonnegative

functions l, k ∈ C(0,+∞) ∩ Lp
loc[0,+∞), and there exists a nonnegative constant K such that

tβl(t) ≤ K and tβk(t) ≤ K for t ∈ [1,+∞). If f satisfies the following condition

(3.17) f(t, u) ≤ l(t)uµ + k(t)

for all t ∈ (0,+∞) and u ∈ [0,+∞). Then the fractional differential equation (1.4) has at least

one nonnegative, bounded and nondecreasing continuous solution on [0,+∞).

4. asymptotic behavior of fractional differential equations

In this section, we first study the asymptotic behavior of the fractional differential equation

(1.5).

Theorem 4.1. Let x0 ≥ 0, 0 ≤ µ < 1 and p > 1/β. If nonnegative functions l, k ∈ C(0,+∞)∩

Lp
loc[0,+∞) and tβl(t), tβk(t) are two nondecreasing functions on (0,+∞), and suppose that

limt→+∞ tβl(t) = a and limt→+∞ tβk(t) = b. Let nonnegative and nondecreasing function

φ ∈ C[0,+∞) and φ(x) ≤ Mxµ for x ∈ [0,+∞), where M is a nonnegative constant. Then the

fractional differential equation (1.5) has at least one nondecreasing solution x ∈ C+
0 [0,+∞) and

limt→+∞ x(t) = x∗, where x∗ is the minimal nonnegative solution that satisfies the following

equation

(4.1) x = x0 +
π

Γ(β) sin(βπ)
(aφ(x) + b).

Proof. Let

(4.2) U∗ =

{
x : x ∈ C+

∗ [0,+∞) and ∥x∥ = sup
0≤t<+∞

x(t) ≤ x∗
}
.

We can easily get that Fx is a nonnegative nondecreasing continuous function on [0,+∞) when

x ∈ C+
∗ [0,+∞). If x ∈ U∗, since φ is a nondecreasing function on [0,+∞) and tβl(t), tβk(t)
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are two nondecreasing functions on (0,+∞), then we have

(Fx)(t) ≤ x0 +
1

Γ(β)

∫ t

0

(t− s)β−1[l(s)φ(x∗) + k(s)]ds

≤ x0 +
φ(x∗)

Γ(β)
lim

t→+∞

∫ t

0

(t− s)β−1l(s)ds+
1

Γ(β)
lim

t→+∞

∫ t

0

(t− s)β−1k(s)ds

= x0 +
aπφ(x∗)

Γ(β) sin(βπ)
+

bπ

Γ(β) sin(βπ)

= x∗.

(4.3)

Therefore, Fx ∈ U∗ when x ∈ U∗.

The rest of the proof is similar to that of Theorem 3.2. We know that the fractional dif-

ferential equation (1.5) has at least one solution x ∈ U∗ that satisfies the following fractional

integral equation

(4.4) x(t) = x0 +
1

Γ(β)

∫ t

0

(t− s)β−1[l(s)φ(x(s)) + k(s)]ds, t ∈ [0,+∞).

Since x(t) is a nonnegative, nondecreasing and bounded function on [0,+∞), we know that

limt→+∞ x(t) exists. Using Lemma 2.2, we get

lim
t→+∞

x(t) = lim
t→+∞

[
x0 +

1

Γ(β)

∫ t

0

(t− s)β−1[l(s)φ(x(s)) + k(s)]ds

]
= x0 +

1

Γ(β)

[
lim

t→+∞

∫ t

0

(t− s)β−1l(s)φ(x(s))ds+ lim
t→+∞

∫ t

0

(t− s)β−1k(s)ds

]
= x0 +

1

Γ(β)

[
aπ

sin(βπ)
ϕ

(
lim

t→+∞
x(t)

)
+

bπ

sin(βπ)

]
.

(4.5)

From (4.1) and limt→+∞ x(t) ≤ x∗ , then we get limt→+∞ x(t) = x∗. Thus, we complete the

proof. �

Remark 4.2. In Theorem 4.1, we know that the equation (4.1) has at least one nonnegative

solution. In fact, let

(4.6) g(x) = x− x0 −
π

Γ(β) sin(βπ)
(aφ(x) + b).

We have

(4.7) g(0) = −x0 −
π

Γ(β) sin(βπ)
(aφ(0) + b) ≤ 0

and

(4.8) g(x) ≥ x− x0 −
π

Γ(β) sin(βπ)
(aMxµ + b).

From (4.8), we get limx→+∞ g(x) = +∞ for 0 ≤ µ < 1. Therefore, there has at least one

nonnegative solution x such that g(x) = 0, that is, x is a nonnegative solution of the equation

(4.1).

If the equation (4.1) has a unique nonnegative solution x∗, from Theorem (4.1), then we can

prove that the fractional differential equation (1.5) has at least one nondecreasing solution and

limt→+∞ x(t) = x∗.
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Now, we begin to study the asymptotic behavior of the fractional differential equation (1.4).

Theorem 4.3. Let x0 ≥ 0, 0 < β < γ < 1 and p > 1/β. Let f : (0,+∞)× [0,+∞) → [0,+∞)

be continuous. Let l, k and k1 ∈ C(0,+∞) ∩ Lp
loc[0,+∞) be nonnegative functions. Suppose

there exists a nonnegative constant K such that tγ l(t) ≤ K for t ∈ [1,+∞), and there is a

nonnegative constant b such that limt→+∞ tβk(t) = b and limt→+∞ tβk1(t) = b. If f satisfies

the following condition

(4.9) k1(t) ≤ f(t, u) ≤ l(t)u+ k(t)

for all t ∈ (0,+∞) and u ∈ [0,+∞). Then the fractional differential equation (1.4) has at least

one bounded solution x ∈ C+
0 [0,+∞) and limt→+∞ x(t) = x0 +

bπ
Γ(β) sin(βπ) .

Proof. From Theorem 3.3, we know that the fractional differential equation (1.4) has at least

one bounded solution x ∈ C+
0 [0,+∞) that satisfies the following fractional integral equation

(4.10) x(t) = x0 +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds, t ∈ [0,+∞).

Let R = sup0≤t<+∞ x(t), then we get

(4.11) x0 +
1

Γ(β)

∫ t

0

(t− s)β−1k1(s)ds ≤ x(t) ≤ x0 +
1

Γ(β)

∫ t

0

(t− s)β−1[Rl(s) + k(s)]ds.

Since limt→+∞ tβl(t) = 0, limt→+∞ tβk(t) = b and limt→+∞ tβk1(t) = b, and using Lemma 2.2,

we get

(4.12) lim
t→+∞

[
x0 +

1

Γ(β)

∫ t

0

(t− s)β−1k1(s)ds

]
= x0 +

bπ

Γ(β) sin(βπ)

and

(4.13) lim
t→+∞

[
x0 +

1

Γ(β)

∫ t

0

(t− s)β−1[Rl(s) + k(s)]ds

]
= x0 +

bπ

Γ(β) sin(βπ)
.

From (4.12) and (4.13), we get limt→+∞ x(t) = x0 +
bπ

Γ(β) sin(βπ) . Thus, we complete the proof.

�

Theorem 4.4. Let x0 ≥ 0, 0 < β < γ < 1 and p > 1/β. Let f : (0,+∞)× [0,+∞) → [0,+∞)

be continuous. Suppose there are two nonnegative functions l, k ∈ C(0,+∞)∩Lp
loc[0,+∞), and

there exists a nonnegative constant K such that tγ l(t) ≤ K and tγk(t) ≤ K for t ∈ [1,+∞). If

f satisfies the following condition

(4.14) f(t, u) ≤ l(t)u+ k(t)

for all t ∈ (0,+∞) and u ∈ [0,+∞). Then the fractional differential equation (1.4) has at least

one nonnegative bounded solution on [0,+∞) and limt→+∞ x(t) = x0.

Proof. From Theorem 3.3, we know that the fractional differential equation (1.4) has at least

one nonnegative bounded solution x ∈ C+
0 [0,+∞) that satisfies the following fractional integral
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equation

(4.15) x(t) = x0 +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds, t ∈ [0,+∞).

Let R = sup0≤t<+∞ x(t), then we get

(4.16) x0 ≤ x(t) ≤ x0 +
1

Γ(β)

∫ t

0

(t− s)β−1[Rl(s) + k(s)]ds.

Since limt→+∞ tβl(t) = limt→+∞ tβk(t) = 0, using Lemma 2.1, we get

(4.17) lim
t→+∞

[
x0 +

1

Γ(β)

∫ t

0

(t− s)β−1[Rl(s) + k(s)]ds

]
= x0.

From (4.16) and (4.17), we get limt→+∞ x(t) = x0. Thus, we complete the proof. �

5. Examples

Example 5.1. Consider the following Caputo fractional differential equation

(5.1)

{
D

1/2
C x(t) = x(t)

1+
√
t
, t ∈ (0,+∞),

x(0) = 1.

From Theorem 3.1 and using the same method in the proof of the Theorem 3.2 in [26],

we get that the fractional differential equation (5.1) has a unique nonnegative nondecreasing

continuous solution x(t) on [0,+∞), and x(t) satisfies the following Volterra fractional integral

equation

(5.2) x(t) = 1 +
1√
π

∫ t

0

(t− s)−1/2 x(s)

1 +
√
s
ds.

Suppose that x(t) is a bounded function on [0,+∞). Since x(t) is a nondecreasing continuous

solution on [0,+∞), then limt→+∞ x(t) exists. Hence, using Lemma 2.2, we obtain

lim
t→+∞

x(t) = lim
t→+∞

[
1 +

1√
π

∫ t

0

(t− s)−1/2 x(s)

1 +
√
s
ds

]
= 1 +

√
π lim

t→+∞
x(t)

(5.3)

and limt→+∞ x(t) = 1
1−

√
π
. This contradicts the fact that limt→+∞ x(t) ≥ 0. Hence, the

fractional differential equation (5.1) has a unique nondecreasing unbounded solution on [0,+∞).

Example 5.2. Consider the following Caputo fractional differential equation

(5.4)

D
1/2
C x(t) =

√
x(t)

1+
√
t
, t ∈ (0,+∞),

x(0) = 1.

Using Theorem 4.1, we get that the fractional differential equation (5.4) has at least one

nondecreasing solution x ∈ C+
0 [0,+∞) and limt→+∞ x(t) = (

√
π+

√
π+4

2 )2.

Example 5.3. Consider the following Caputo fractional differential equation

(5.5)

{
D

1/2
C x(t) =

√
x(t)+t

1+t , t ∈ (0,+∞),

x(0) = 1.
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We know √
t

1 + t
≤

√
x+ t

1 + t
≤

√
x+

√
t

1 + t
≤ x+

√
t+ 1

1 + t

for all t ∈ (0,+∞) and x ∈ [0,+∞). Using Theorem 4.3, then we obtain that the fractional

differential equation (5.5) has at least one bounded solution x ∈ C+
0 [0,+∞) and limt→+∞ x(t) =

1 +
√
π.

Example 5.4. Consider the following Caputo fractional differential equation

(5.6)

{
D

1/2
C x(t) = ln(1+tx(t))

1+t2 , t ∈ (0,+∞),

x(0) = 1.

Since
ln(1 + tx)

1 + t2
≤ tx

1 + t2

for all t ∈ [0,+∞) and x ∈ [0,+∞), and by Theorem 4.4, then we obtain that the fractional

differential equation (5.6) has at least one bounded solution x ∈ C+
0 [0,+∞) and limt→+∞ x(t) =

1.
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