Submitted to Journal of Integral Equations and Applications - NOT THE PUBLISHED VERSION

JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS

1 vl ,No., YEAR

i https://doi.org/jie. YEAR..PAGE

3

“

5

. BOUNDEDNESS OF HARDY TYPE OPERATORS ON Q TYPE SPACES ASSOCIATED
- WITH WEIGHTS

8

? CHEN ZHANG, SHENGWEN LIU, AND PENGTAO L1

10

1 ABSTRACT. In this paper, we investigate the boundedness of weighdyHaperators), and the corre-
" sponding Cesaro type average operatgren Q type space@ﬁgf“A (R™). Moreover, we provide explicit
5 norms for bottJy andVy on Qﬂ?_/\ (R™) under the assumption of the integrability gf

14

15 1. Introduction

% Let f € LY(R). The classical Hardy operator is defined as

— X

(1) Uf(x):)—l(/ f(y)dy, Xx+O.

19 0

zz The adjoint operator dfl is the classical Cesaro average operator:
21 ® dy :
2 /X f(y)v, x> 0;
23 V(x) = X dy

2Z —/_ f(y)v, x< 0.
2% In addition,U +V becomes the Calderbn maximal operator:

27 1 ® f(y)

- U+WV)f(x)==[ f(y)dy+ [ —=dy, x>0,
28 X Jo Jx Y

29 see Bennett, Devore and Sharpldy. [ It is obvious that the operatdd can be dominated by the
30 Hardy-Littlewood maximal function{U f| < M(f), and the famous Hardy integral inequality holds:
31 forl< p< oo,

z% U fl[Lpr) < %HfHLP(R)a

34 Where the constarm/(p— 1) is the best possible, see Hardy, Littlewood and Polgl.[In many
35 branches of analysis such as approximation theory, diffedeequations, the theory of function
36 Spaces, etc., the Hardy integral inequality and its vasihave played an important role. Compared
37 with the Hardy-Littlewood maximal function, the study otthlardy operator and its generalizations
3s may not be as delicate as that of maximal operators, butetjllires the use of certain beautiful and
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1 elegant ideas. In the last decades, the boundedness of thg blgerator and related topics have
, attracted the attention of many mathematicians. We refereéader to Andersen and Muckenhoupt
3 [1], Edmunds and Evand ()], Giang and Méricz 14], Golubov [15], Long and Wang 18], Moricz
4 [19] and the references therein for further information.

In [5], Carton-Lebrun and Fosset introduced a class of integrataiors, called weighted Hardy
type operators, as a generalizationlbf Given a nonnegative functiog : [0,1] — [0,). The
weighted Hardy type operatbly is defined as

1
Uy (%) ::/0 FOw)dt, xeR".

0 Accordingly, as the adjoint operator 0f;, the weighted Cesaro average operatorpfs defined by
11

[e|e |~

12 Vi f(X) = /1 f <§)t—”w(t)dt x€R"
l? 1] = 0 " s .
14 The weighted Hardy type operatdy and the weighted Cesaro average operdoare adjoint mu-
15 tually:
6 / g(X)Uy f(x)dx= / F XV g(x)dx,
RN JRrn

17

& Wheref € LP(R"), g € LYR") with 1 < p,q <« and ¥/p+1/g=1. In [5], Carton-Lebrun and

o Fosset proved that tt="y(t) is bounded on0, 1] thenUy is bounded oBMO(RM). In [25], Xiao

.o determined the corresponding operator normspandVy, respectively, which sharpens and extends
,; the main result of§]. For further progress on this topic, we refer to Chu, Fu and[, Fu, Liu and

5, Lu[1Z], Fuand Lu [L3], Tang and Zhai21], Tran [22] and the references therein.

,;  The main purpose of this paper is to investigate the boureteof Hardy type operators on a class
5. of Q type spaces related with weights. Initially, tQetype spaces of analytic functions, denoted by
5= Qp(D), were introduced as the extensions of the holomorBM®© type spac8MOA(D) on the unit

55 diskD, see Aulaskari, Xiao and Zhag][ In 2001, Essén, Janson, Peng and Xiao introduced thespac
> Qa(R") in [11] as a generalization d@,(DD) in high-dimensional Euclidean settings. From the view
. Of the theory of function space®q (R") can be seen as a class of differential function spaces betwee
,, the Sobolev spac&¥2S(R") and the bounded mean oscillation spB&4O(R"). In recent decade®

.o type spaces and their generalizations have been extenstueied. As a class of differential function
., shaces, Q type spaces have been extensively applied tautheaftharmonic analysis, differential
. equations and potential thoery, etc. For more informaties refer to Chen, Li and Louwg], Dafni

55 and Xiao P], Wu and Xie 4], Xiao [27], Li and Zhai [17] and the references therein.

o Letz :]0,00) — [0,00) be a non-decreasing function. The Q type spaces relatedhetiveight

5 function.#’(-) is defined as follows.

35 Definition 1.1. Let1 < p,q< o, A >0, and n> 1. The space Q‘h (R") is defined as the set of all

87 _measurable functions satisfying
38

e = s [ (] f(X+Y)—f(X)pdx>q/p%<L> o,
a0 Qra®) yi<vie) \ TOVAT A

‘E where the symbaup denotes the supremum taken over all cubes | with the edg#léfig and the
42_edges parallel to the coordinate axesRf.
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p,q n H .
The spaceQ%/,A (R") covers many classic) type spaces. Below we list several examples.

Example 1.1. ([6, Definition 1.1])Let1 < q < o, n> 1. The space @, (R") is defined as the set of
all measurable functions satisfying

f(x X—Y|
f m o= Su // %( )dxd < o,
| HQq (R?) ICRp \X y|qn (1) Y

- Where the symbaup denotes the supremum taken over all cubes | with the edgehléfig and the
~_ €dges parallel to the coordinate axesRfi.

~Jo|als]en]|r

10 Example 1.2.([8, Definition 1.1])Letl < g < o, A >0, and n> 1. The space @M (R") is defined

11 as the set of all measurable functions satisfying
12

1? q —/\n |f ‘X_y|
= ||f||Q%A(R)._ sup //I \x y|q” %( 10 dxdy< oo,

5 where the symbadup denotes the supremum taken over all cubes | with the edgthléfig and the

16 edges parallel to the coordinate axesRA.
17

15 Example 1.3.([28, Definition 2.6])Let1 <g< p <~ and0 < a < min{1,n/q}. The Besov-Q space

19 b.q(R") is defined to be the set of all functions satisfying
20

21 Hqua RN T SUp ) pn/p// X— y|n+qor dXdy< 0,

22

23 where the symbalup denotes the supremum taken over all cubes | with the edgthléfig and the
24 edges parallel to the coordinate axes®i. If A =qga/n—q—q/p+2and.# (t) =t4""99 then
25 QW (R") = bq(R"). Specially, the spacesJ@A R") have been introduced by Bao and Wulan
26 in [3] In par'ucular with special values for p, q ara, we can obtain that ﬁ; R™) = Qq(RM),

" where @ (R") was introduced by Eé®, Janson, Peng, and Xiao ja1]. If ,}6/( ) =t"29 then

Zi Q}{/O( ") = Qq(R"). Additionally, we can also obtain that | giéfl)‘z(R”) = Qg(R”), where

2 QB (RM) was introduced by Li and Zhai ifL7]. If A = (4—4B)/n and.# (t) = t"~2@=B+1) then
a1 QF, (R = QG(RM).

z% Inspired by the works of45] and [21], it leads to two purposes of this paper naturaIIy The first

S, one is to classify the condition af such that the operatotsy, andVy are bounded o@ (R”).
5 The second is to determine the corresponding operator norms

-~ InSection2, we investigate various properties@f,, (R"). For instance, the spac%(q (R")
- are mvanant under affine transformations. In addltlon ,pr@vide the proof of the completeness of
2 Qy (]R”) and the non-trivial conditions. At last, the inclusion telas betweerQ ", (R") and

29 several classical spaces are discussed.

.  InSection3, as the main results of this paper, we prove that if the fonafi satisfies

41

1
il An/d—n/p—
b /O £MHAN/G=N/P=1 Ay () dt < oo,
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the weighted Hardy operatbly is bounded on the spa(‘@g;,q_A (RM). Also, let

0

o|s|w|n]r

— The adjoint operatodyy is bounded orQE{ﬁA (R"). Moreover, we obtain explicit norms faf, and

~ Vyon Q‘}f{/\ (R™) under specific conditions, see Theoredrsand3.2 We point out that these bound-
s edness results generalize the related result35r2[1], and are new for the special cas@g (R") (cf.

5 [3]) and Qg“ (R") (cf. [6]). Section4 is devoted to several special examples of weight functions
10 J (-) satisfying the conditions listed in SectiBnincluding logarithmic functions and sine functions.
11 Some notations:

12 (i) Let R" be then-dimensional Euclidean space with the Euclidean npdnand the Lebesgue

8 measuralx. The symbol denotes a cube iR" with the edges parallel to the coordinate axes.

“ The sidelength of is ¢(1) and the volume is denoted Kily. Denote bytl,t > 0, the cube with

L the same center dsand sidelength?(l).

® (i) U~V shows that there is a constant- 0 such that~V <U <cV. If U < ¢V, then we
v write U < V. Similarly, we writeV > U if V > cU.
8 (i) In this paper, we assume that the weigh functigfi(-) : [0,%0) — [0,) is non-decreasing.

9 Throughout the rest of this paper, we assume t#dt) ~ .7 (2t), t € [0, ).

20

21 i i P.q
o 2. Some basic properties 0@, (R")

23 The invariance OQP;/\ (R™) under affine transformations is as follows.
24 ’

2E Proposition 2.1. Let1 < p,g < c andA > 0.

26 (i) QY7 (R is rotation invariant;

21 (ii) ijﬁ)\ (R") is translation invariant;

28 ... ) 11—

- (i) 1 £ (x) = t(1/p+L/a-1=A/an¢ (tx) t > O, then|[fellgna, m = Il fllgoe, o)

" Proof. (i) From Definition1.1, it is easy to see that if we replace the clilvath centerx; and the side

:% length/(1) by the ballB(x1,/nf(l)), the space newly obtained is the sam@%ﬁA (R™M). Forxe R"
— and any orthogonal matrix/ of ordern, we havelx| = |[x<7|. Setw(X) = x</. For any balB c R"

e with radiusr (B), we obtain|| f o wHQg{}q’/\ ®n = [If HQE},S,A (rm) Since

- /

— a/p

36 —An V24 dy

= sup(r(B / (/fxﬂ+ﬂ—fx;zf pdx> %(—)

7 S ] S 107 ¥ = 10 r(B) / ly|a"

= an oqr \ V7 (&) ¢
39 = sup(r(B))~ / </ filn+&)—f d) %(—)—
— B g myer, icanten \Jninmsor, xemy |11 ¥ &)~ TP r(B)/ gl

40

g (o rmren) o (1) 26
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(i) Forany f € Q%1 (R") andxo € R", we have

a/p |
Y+ Xo| dy
f(X+y+2x) — f(x+ pdx) %( >
/y<ﬂ </’ yrae) i) (1) J 1y 4ol

/
B /B(Xmﬁé(l)) </I+XO|f(n 8- f(n)|pdn>q p%<%>%7

hencel (- +o) gne, an) = 1| ()l 83, -
(iii) Assume thatl is a cube irR" and letf ijﬁ)\ (R™). By a change of variables, we can get

(e(r))=n /y<ﬂ (/’ft X+y) — fr(x )|pdx>q/pygf<%> ’jz’n
- (£(|))2\n/y<\/_Z (/t 1+p/q-p-Ap/q) " f(tx+ty) — f(tx)|de>Q/p%<%> |;||Zn

a/p
- L [ty] ) d(ty)
= (¢(t1)) ™ /y<ﬂ (/yf tx+ty)—f(t><)!pdt><> Jf(@) tyan
|

R IR R R Rk
[S[o|a|s[w|[R|R[o]e]e|~]o]o]s]|w]n]wr

" o ) a/p & dé
S (o) () 2

5 wen [ (o= smpan ) (4 ) g

20

21 Which meansthdtftllqu (&) —||f||qu (&N -
22

2 ., Theorem 2.2.Letl < p,gq< o, a>0,andA > (p+a) . Then

24

24 RM D QPtad RrM™ .

5 Q) 2053w (R

2% Proof. If f € Qg;jq (RM), then for any cubé in R", by applying Holder’s inequality, we have

(p+a)p p+a>p

28

22 (Z(I))_M/IVKWZ </’f *+y) - 1 )’pdx>q/p%<%> !3’2‘/“

31

< (E(I))_An/wﬂ <</yf X+y)— f(x )!P+adx> p/(p+a) (/1dx) p+a)>

33

a/p
lyl ) dy
j LA
(f(l) |y|an
34

) a/(p+a)
o e[ ([ - i) (B

36

f
31 —H ’|QD+&Q aq (R”)’

(pta)p

38

s9 which givesf € Q%1 (R"). SoQ%?, (R") D Qg{f?\i (R"). O
. o o <p+a)p

40
41 Letl be a cube centered atwith side length’(l). Denote bytl, t > 0, the cube with the center
42 % and side length(l). Because of the translation invarianceQﬁ;‘/\ (R") and the assumption that
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1 JH(t) = (2t), the following equivalent definition apg{f_A (R™) can be obtained immediately via
Z change of variables. '

Proposition 2.3. Let1 < p,g< o andA > 0. Then fe QE;E_A (R™) if and only if

a/p
f(x af XY )
@ supc ™ f (/ P9 = S ora((B )dX) dy<e»

8 where the symbaup denotes the supremum taken over all cubes | with the edgéhléfig and the

9 edges parallel to the coordinate axesRA.
0

u Next we introduce the spac; ,(R").

[~ o lo]s]e

=

2 Definition 2.1. Let1 < g < o, and0 < y < 1+q/n. The Campanato spacg;, ,(R") is defined as

13_the set of all locally integrable functions f satisfying
14

5 1% on) = SUBLLC V“/yf X) — fi%dx < o,

16
17 Where the symbalup denotes the supremum taken over all cubes | with the edg#léfig and the

15 edges parallel to the coordinate axesRf,, fi = (¢(1))~" J; f(x)dx

Y Following the procedure o8] Proposition 2.10], we can get the following inclusion tielaship

20 p.q n n

=~ bet o (R d-%Zp y(RM).

o etweerQ’, ", (R") and.Zp,y(R")

22 Theorem 2.4.letl<p,g<wand0<A <1l+qg/p+g/n—aq, Q'C”q (R™) € Zp p144 /g-1/9)(R").

Remark 2.1. As a corollary of Theoren2.4, we can see that fot < p,g< o andA >1+4+q/p+
> q/n g, the elements in % R™) are constants. Hence in the rest of this paper, we alwaysassu

% thato<A <1+9g/p+09/n—q.

2L Notice that||f||qu ®m = 0ifand only if f is constant aimost everywhere. The following theorem

. shows thaQ (R“) is completed.

30 * Theorem 2.5.Letl < p,q<oand0<A <1+4q/p+q/n—q. Qp (R™) is a Banach space.
31

s2 Proof. Let {fn} be a Cauchy sequence @7 (R"). From Theoremz.4, we know that{ fn} is
33_also a Cauchy sequencedf, p1:1 /q-1/q)(R"). SINCEZL, p142 /q-1/g)(R") is @ Banach space fm}
34_converges to a functiof according to the norm o/}, 51, 1 /q-1/g)(R"). For any cubé, we have
35

% (1))~ (1+A/9-1/9) pn/’ X) — fmi) — (f(x) — f)|Pdx < ||fm—pr

Zp.p(1+A /a-1/q) (R

% Then, we have
o tim 1m0 = ) = (100 )| Pex=0.

“0_Therefore, there exists a subsequefiig }kez, such that
41

o lim fin, () f, = (9 —
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a.e.x e l, thereby

(fn ) = F9) = (Fy (9 = £) = lim {00 — i, = (F() — 1)
~(fmy) = fmny = (F3) = 1))
+(fy (v) = 1)) = (fy () = £() }
= Jim { (9 = fin 0] = [Fine ()~ T ) }-

a.e.x,y € |, using Fatou’s lemma, we obtain

30— £ — (T () — F(y)]? x—y[\ )"
A/</ e 7 e())‘“) W

a/p
~ ey | ( "_m'f”“(x)‘fm(x)‘(f”“(”‘f”‘(”)’p%p/q<u)dx> dy

BB R R R e
|o[B]e|S[R]S|e|e]~]o]a|a]w]n]|n

= i x—y[Pr o)

52 (e (9) = fy (%)) = (i (¥) — iy ()P x—y\ L )\ *°
5 < lim (¢(1)) / / m ) ~ M) = m Ji/p/q<—>dx dy
“ B x—y[P o

20 _ﬂlHﬂm fm Pa (@

2 o Q%Y (R)*

,, Thus,

25 [ fm — f||Q§§7A(Rn) < lller:oH fr — fm HQ%A(M),

2
2% which implies tha{{ f, } converges td by the norm onEZA (RM). Since

26

= || fm — fHQPJ;{A(Rn) <|fm — fHQPJ;{A(Rn) + [ fm — meQPj’f"/\(R”)v
2s {fm} converges td by the norm|| - ||Q2/‘31A(Rn) , which completes the proof of Theore2rb. O

29
o  Letf beadifferential function oRR". Denote byJf the gradient off, i.e.,

31 . of of

32 Df— (0—)(1,...70—)("]>.

z% Definition 2.2. Letl< p<,0< y <2+ p/n—pand fe C(R"). The space CIHR") is defined
o as the set of all measurable functions satisfying

® 11 cpen) = SUBLEC)™ P 108 < o

P n .
37 CISYR

SE where the symbalup denotes the supremum taken over all cubes | with the edg#hléfig and the

3% edges parallel to the coordinate axesRA.
40

2 Remark 2.2. Specially, for p=2 and y = 2, CIS(R") comes back to the conformally invariant
4> Sobolev type space CI®") introduced by Xiao ifj26].
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1 Proposition 2.6. Letn/(n—1) < p< 2n/(n—1) and0 < y < 2+ p/n— p. The space CIJR") is
2 non-trivial.

Y
3
o)
=
O
@
=
=]
)

fo(x) == (1+ ’X’Z)(Y—ZJFP)H/(ZD)_
Below we prove thafo(x) € CIS) (R"). A direct computation gives, far=1,2,...,n,
Ay fo(X) = n(y/p—2/p+1)(1+|x2) 2PV -1y
which implies that
Ofo(x)] < (L-+[x2) 2PV 02,
Then
(e(1))Tprynee /| |Ofo(x)[Pdx S (¢(1))"Prymte /| (14 [q2) Y 2PVEPI2 gy

Denote byxg the center of. We divide the rest of the proof into two cases.
Casel: |xo| <2((1). Forxel, |x| < |x—xXo| + [%o| < 3¢(1). Whenp >n/(n—1) andy > 0, we
18 cangetyn—n+pn—p>0and

R IR R R Rk
N|e|o|R|e|[N|E|S|o|e|~]o|a]s|w

19

o (e 01009 P

% < (g(l))npnynﬂo/w') (1+|X|2)(v72+p)n/27p/2|x|n71d’X’
ZE Osz(l)

24 < (Z(l))n—pn—ynﬂ)/ (:H_|X|)(y—2+p)n—p|x|n—ld|x|

= 03€(I)

l S (eQyrenomee [T pgmemEn gy < 1

27

28 Case2: |xo| > 2¢(l). For this case, ik € |, then|x| > |xo| — [Xx—Xo| > £(I). Sincey < 2+ p/n—p,

2 j.e.,,p—(y—2+p)n> 0, we obtain
30

31

2 (e(a)rerme [1050(0|Pdx

3 | dx

34 < (/1 nfpnfvnw/

% < (0(1))"Prnp /1dx< 1,

5 < (1) O e

z% So we can see that

o sup(¢(1))"™ PP [ Do) Px < oo,

o ICRN I

42 Which completes the proof. O
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1 Theorem 2.7.Let1 < g< o, n/(n—1) < p<2n/(n—1) andmax{0,1—q/p} <A <1+4+qg/p+
g/n—g. The space g;q/\ (R") is non-trivial if and only if

A
/0 t@-D(n-1)

Proof. Necessity. We apply the idea dff, Theorem 2.3]. Firstly, we assume that

v ()
/0 (@D dt= "

0 LetfeQBY (RMNC(R") be nonconstant and real. Then there exists a pgiat(x7,x3,...,x3)
11 suchthaflf (xo) # 0. According to the Householder reflect@B[ page 71], there exists an orthogonal
12 matrix &/ = (&j),i,j =1,2,...,n, such that

13 n .
a PAREER i = (|Of ,O,...,O,
: = (3 Zsoan 3 o 2 oan) = (D105 0...0

16 Leth(x) = f (x&/' "), wheres/ " is the transpose matrix o and def.« ") # 0. By Proposition
17 2.1, we can geh e Q'C”q (R"). There exists a poinfo = (¥2,¥3....,y3) such thatyo.e/ " = xo, i.e.,

18

15 o X = z yJaji. In addition, it holds

20

dt < oo,

—~
w
~

[efe|~]ofals]o]ny]

o oh ot n 9t 0 a1
21 on TV\_ < 2" Na. — o .
2 3y, 0 =5 (0527 ) 3 ox (YO,!Zf Jain=3 2 (o)ai = |0 (xo)l;
— = =1 J

3 oh _

24 v (yo)=0 i=23,...,n

25

~~ Therefore,0h(yo) = (Of (x0),0,...,0). Note thath € CIS)(R"). There exist® > 0 and a cubé

27 centered ayp such thatifx € I, 0)5 ) > 20 and—=> ah( ) < 0,i=2,3,....,n. Then
28

z% > (£(1 ))‘A”/Wﬂ (/5pdx> Wp%f(%) |y|‘:z’_q
- sy e [ ()
2 ey e [M 2O g

38
50 Whichindicates that ¢ Q°7, (R") and this is a contradiction. The above results show@3at, (R")N

20 CYRM) is trivial if

“ A0
2 fy ==
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Forf e Qﬂ;ﬂA (R") andg € L*(R"), denote byf x g the convolution:

L

2

2

h

= g0 = [ f(x-y)gW)dy.

o RO

L

il

9 . "y - - . .. ., -
o Itfollows from Minkowski's inequality and PropositioR 1 (i) that f xg € ijﬂ)\ (R™) with
i

li

li

7 I£llgza, ey <1 Fllgas, s [ a)ly

15 ’ -

15

]i

i% Especially, ifg is a smooth function with compact support, theag € Q% (R") NCL(R") is a

- constant a.e. oR". By [11, Theorem 2.3], there exists a sequefige> 0} with

21

22

23

on / On(x)dx=1
Rn

25

26

27

28 and the support odi, shrinking to 0 such that « g, — f asn — « a.e. onR". It follows thatf is a
29 constant a.e. oR".

3E Sufficiency. We follow the idea oP[6, Theorem 4.1]. Assume théte CISE/\ Jq+1-p/q
31 satisfies §). Given a cubé. We get

32

(R™ and#

33

34

35 /

- /|y|<m<l> </|’f(x+y)_ f(x)’pdx)q "%/(%) Ijz”
a/p

de) (a5 e

37

il 1 p \ WP d
a </ /(/ Of (x+t dt> dx J/(M> Y|
22 - |y|<¢ﬁz<l>< o B1EEW) ((1) ) lyjan-a

1
38 = Of (x+ty) - ydt
39 ly|<+/ne(l) (/I‘/O ( * Y) y
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Minkowski’s inequality gives

*
2
3
4
4 a/p Y
. . vl '\ dy
5 o / /fx —fxde> %/(—>—
- <<<>> o (1109 100 ()
7
7 1 p\a/P Y
. N [} _dy
s < || /(/ Of(x+t dt) dx) ’%/(—)
b (( =) MI)( U BF )l OVAR
10
10 L a/p d Y
1 < [lean™ | (/Dfx t de) Jif(M) )
" < J, () e (D (x+ty)] (1)) lyjan-a
5 1/q
a/p d
“ R "\”/ (/ Of(v |C’dv) J/(M) Y
- < (( DN O A el €y fyjs
16 !
3 < flloe (ﬁ(l))q”_q_”/ a (L) ’
v SATeist, oapra® yl<vmey (1) / Jy[an=a
19 1/q
19 v ()
20 S ||f||C|sgA/Q+l,p/q(R”) (/0 mdt> =

24 \which indicates thaE1S°

p,q . p7q . . .
- |D}\/Cﬁlw/q(ll%r‘) CQya (R™). Obviously,Q’,", (R") is non-trivial. O

26

27

28
»9  Moreover, there are also inclusion relationships betv@fkj}\ (R") and Besov spaces.

30

31
32 Definition 2.3. Let0 < a < 1 and1 < p,q < . The spaceBp?(R") is defined as the set of all

33 measurable functions satisfying

34

35

36

- q ) a/p dy
" gy = L, (1009 = 101P0x) 2 <

39

2 Theorem 2.8.1f 1 < q<p,A=qa/n—q—qg/p+2and. 7 (t) <tI"9 ThenBYYR") C
" Qc;{g)\( n).
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Proof. Supposef € Bqu(Rn). By Holder’s inequality, we obtain that for any cuban R",

a/p
[ (st - terra) e (M) &

a/p an-n-qa
an ~ (p-an/p( Y dy
=) /y<m(|)</||f(x+y) f(x)|pdx> == p(ﬁ')) [y[an

— (E(I))—/\n+nfqn/p*qmrn+qa/ </’f(x+y) _ f(X)’de> q/pﬁ
lyl<y/e() \J1 |y|n+aa

0 a/p dy
< f(x — f(x)|Pdx —_
< [ ([ oy - riirax) 2

]i = ||f||ggCI(Rn) < 0,

IN

BB R R R e
o|R|e|N|R[S|o|e|~|o|a|s]w|m|r

17

18

15 Which impliesf € QY (R, i.e,BpA(R") € Q%1 (RM). O

20

- 3. Boundedness of weighted Hardy operator o@ﬂ;ﬂ_}\ (R™M)

22
23 _In this section, we will discuss the boundednesd gfand its adjoint operatdry, on Q‘}f{/\ (R™M). We

24 assume that the weight functio# () satisfies the following condition:
25

26

27 (a)

28

A ()

29
30 Theorem 3.1.Lety : [0,1] — [0,] be a function and < p,gq<,0< A <1+q/p+9/n—q, and

5 n>1 Theny, : Q%1 (R") — QY (R exists as a bounded operator if

32

33 1
a4 (5) / AN/ A=0/P=0/Ay () dt < co.
. 0

35

36

37 Moreover, wheng) holds andl < g+A < 14q/p, # (-) satisfies4), the norm of i, on @7, (R")
38 is given by ’

39

40

1
. IUallons, i ey = [, €O oty
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Proof. We assume thatj holds. If f € QE;E_A (R™), by Theoren?.5, Qg{f/\ (R™) is a Banach space.
Then for any cubé c R", by use of Minkowski’s inequality, we have

((f(l))_}‘”/wﬁm) </|’Uwf(><+)’)—Uwf(X)\de>q/p;g/<%> bclj|_qyn> 1/q
- P NPy ) dy )
_ ((f(l)) /y<ﬁ12(|) </| dx) %/(m) Mqﬂ)

1 a/p 1
-An _ p |y| dy
</ ((E(I)) /|y|<m(l)</l|(f(tx+ty) f(tx) dx) %(—E(I)%y’qn) W(t)dt.

1% Changing the variablest = tx andv = ty, we get

18 a/p 1/q

a/p 1/q

23

24— Therefore,
25

/0 Sf(txty) — F(00) ()t

B R R R
[@[R|R[e]e]e|~]o]o]s]w]n]wr

26

o a/p v\ dy 1/q
— ZI"\”/ /fo+ — Uy f(x)|Pdx ,}5/(—)

& <( ) y<m(|>< (Ve TGy =Ly ) any) fypen

29

29 1

30 SHfHQ%{/\(Rn)/O {N=n/P-n/aEAV Ay, ) dt,

31

32
33 which implies the boundednessldf onQ>7, (R").

3 Naturally, ifUy is bounded orQEgﬂA (R™), then we can choose the function
35 ’

36

37 _ |X|nfn/pfn/q+)\ n/qj X € Rln;
1(X) =

38 —n/p—
+|X|n n/p n/q+)\n/q, XERP.

Si
A&
41 whereR[' andR{' denote the left and right havels Bf', separated by the hyperplaxe= 0 (x; is the

42_first coordinate ok € R").
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We compute the norm ofy(x) on ng/\ (R™) as follows. For any cubein R", if 1 <g+A <

1

21 +q/p, AR s () dt < w0, we have

3

- V() dy

A —A“/ (/fx f pdx) ;{(L)

5 (eqn) oy [ f1(x+Yy) — f1(x)] (1)) Ty

5 a/p d

7 gzl—“/ ( fxpdx> %<M> y

T O fypvmon a2 o1y ) Jyfan

9 a/p
2 _ (ﬁ(l)))m</ |X|pnfn+()\fl)pn/qu_'_ X’pnn+(/\1)pn/qu)
10 3IN{x|<6(31)} 3IN{|x|>£(31)}

11

— vl ) dy)

12 X / %(—

o ( vy N/ [y

[N
~

031 a/p A
sw(l))“‘( /0 PP 4 /3|<£<|>>p”“+<“>pn/qc1x) [

tan—n+1
16
17 N/ tan— n+1

o Which implies that G# || fy||? <o, ie. f; € QY (RM).

19 qu )

zi Noting that

21

Zz Uwfl( / th— n/p— n/q+/\n/qw()
% we have

24 1

= Uligee, sy = [, /Py 1)
_— 7, 0

26

5, Therefore, the proof of the Theoresnl is complete.

. O
28

29

% For the boundedness @, on Q‘?l’,q/\ (R™), similarly, we have

31 ’

32 Theorem 3.2.Lety : [0,1] — [0,) be a function) <A < 1+4q/p+9/n—q,n>1,and1 < p,q < .
2 Then\y : Q%1 (R") — Q7 (R") exists as a bounded operator if

34

35 1

% (6) / £V/PHYA-20-A0/d 1) it < co.

— 0

37

;e Moreover, when@) holds andl < q+A < 1+q/p, % (-) satisfies4), the norm of \ on @7, (R")
39 IS given by ’

40

1
41 _ n/p+n/q—-2n—-An/q
47 Vil eyt i = | Wt
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Proof. Suppose &) holds. If f € QE;E_A (RM), then for any cubé in R", applying Minkowski’s in-

 equalty, we have

_ ((zaw" [ o ([t v toma) (M0 |jZn>l/q

E - (W'”_M/Wm (I G2 -G ot )™ (%)ﬁ%)l/q
= L (0 (L) G (2)335) v
 Letingu— andy—, e ge

14

o (e[ (IR -)

16

de) q/p%<%> &Zﬂ) /g

%:«é(%)) /le (/ (F(uv) — f(o >>|pdu>q/p%(£’(—vl_’)>|3|Zn>l/qt“/p+n/qMn/q.

19
20 Therefore,

21

- L a/p vyl \ dy 1/a
5 (““” "y (Mot —ortpax) e (555 ) |y|qn>

23

24

2? < ||f||vaq (RM) / tn/p+n/q72n7)m/ql,ll(t)dt < o,

2° which implies the boundedness\4j onQ 5 (RM).

Zl For the second half of the theorem, By a way similar to Thed3elintake the function

28
. : { _ |X|n—n/p—n/q+/\n/q7 X € Rln;
X) =

30 + x|V Pn/aAn/q xc R

31
32 Notingthat 1< g+ A < 1+q/pandf = n+1dt < o0, We can get

33

3 R ()
q
" 0£11lpn o % [ it < o
35
- And we have L
5 Vi fy = fa() [ t/pHova 2 Anay g

% |n that case
39

1
40 HVI’UHQ%A(R”):/O t”/p+”/q*2"*/\"/qll,l(t)dt

‘E Therefore, the proof of the Theore32 is complete.
42 O
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O

orollary 3.3. Lety : [0,1] — [0, ] be a function, > 1, and1 < g < .
) Uy : Q% (R") — Q%, (R") exists as a bounded operator if

~—~

1
/ £(@-27/Ay(t)dt < co.
0

—~~
~
N

Moreover, when?) holds andl < q < 2, % (-) satisfies 4), the norm of |, on Q}/(R") is given
by

1
_ (9-2)n/q
Vet ey, ey = |, 12 et

w2 (i) Vy : QY (R") — QJ, (R") exists as a bounded operator if

=
Flo|e|o|~]o|o|s|w|n]|r

1
14 (8) / t(Z*ZQ)n/QqJ(t)dt < oo,
0

® ~ Moreover, when§) holds andl < q < 2, % (-) satisfies 4), the norm of  on Q},(R”) is given

1
= Vil eny sy = /0 ¢2-2a0/ay, (¢t
21
zz Corollary 3.4. Lety : [0,1] — [0,] be a functionD <A <24q/n—qg,n>1,and1 < q< .
23 (i) Uy : Q% , (R") — Q% , (R") exists as a bounded operator if
24

o5 1
% (9) / t(quH)"/ql,U(t)dt < 0.

26 0

% Moreover, when9) holds andl < g+ A < 2, ¢ (-) satisfies 4), the norm of i on Q! , (R") is
— given by

Zi

- 1

Sl HUWHQ&«/A(R”)—?Q;/A(R”) :/0 t(q72+A)n/qL,U(t)dt.

32
3 (i) Vy : Q% , (R") = Q7 , (R") exists as a bounded operator if

1
— (10) / £(2=24-2)/ay(t) dt < oo,

0
37
s Moreover, whenX0) holds andl < g+ A < 2, J¢(-) satisfies 4), the norm of \ on Qq%)\ (R") is
39 given by

40

1
“ _ ["t@e-2a-M)n/q
) Mol -, ) = |, ¢ W(tydt
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1 4. Applications
2 In Section3, the integrability of 7" (-) plays an important role. Below we will provide several exam-
— ples of the weight functions?”. The first one is a generalization of the example introduge@i,

5

E Example 4.1.Let3 > 0,1 < q< o and gn—n < m, we define#y(-) as
7 tm

B — 0O<t<v/n
0 =3 ()]

10 t™, t>/n

11
-, Then#(-) satisfies 4).

lz Proof. By the definition of’#1(-), when O< t < \/n, a direct computation gives

‘. ) 1

gi tan—n+1 tqnfn4¢n+1‘n1(é$ﬁ) B

% So we have

19 /ﬁ A0 4 iy [ L dt
%Z o tan—n+l u—0tJu tq”—“—”Hilhw(—l—) B
21 eﬁ

. _ vh 1

. <Jm et

24 < fim tm-amnyn < g

o5 u—0+

26 It is obvious that#;(-) is a non-decreasing function. O

" Example 4.2.Let1<gq< o, >—1,m>0,and gn-n—m< min{0,—B}. Define#5(-) as
28

m evn B .
- = (N () ?;:/;ﬁ’

Si tm

31 ’

2 Then.t,(-) satisfies 4).
z% Proof. We first prove that the integral is convergent. ket In (e\/n/t). Then

35 vn (1) vn m—gn+n—1 ey/n P
— /O cnnrrdt = /O t ('n(T>> dt

37

38

39 ® _
— < / e YyPdy
40 m—qn+n

A

/oo g¥an-n-m)yBqx
1

AN

41

a1 ® 1)-1
" < [Tewr i ay=r(g )
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Next, we prove the monotonicity af(-). In fact, we only need to verify tha(@"-mx8 is
monotonically decreasing for> 1. Sincegn—n—m+ 3 < 0, we have,

(ex(q”*”*m)xﬁ)/ = an--myB-1((gn—n—m)x+pB) < 0.

Therefore #5(+) is a non-decreasing function. O

of|w|~|o|a|s]w|m|r

Some other example is related to sine functions.

10 Example 4.3.Let >0, m>0,1<q< o and gn—n< m+ . Define#3(-) as
11

12 O\ B
13 tMsin| —— 0<t n;
L sy | o0 (5 - o<tevm
0 t™, t>/n

16 . -
o Thenzs(+) satisfies 4).

i% Proof. We use direct computation to prove the above example, when @ /n, we have

20

— Vi ta(t _qvm (ot \P

21 / nfflgldt = lim tmq““‘lsln<—> dt

” o td u—0*Ju 2y/n

= < lim [Vgmee-anen-1g;

24 ~ us0tJu

% < lim tmrA-antn YN < g

26 ~ us0t ~

27

,s And by the definition, we know tha¥3(-) is a non-decreasing function. O

2% Example 4.4.Letm> 3> 0,1 << o, and gn—n < m— 3. Define#4(-) as

) tm
32 . W, O<t< \/ﬁ,
33 =%/4(t) = 2,/n

34 tm, t>/n

35

36 Then.#4(-) satisfies 4).

37

33 Proof. We still need to prove the convergence of the integral firH;tC(Ssir(nt/(Z\/ﬁ))B IS a concave

SE function when O< t < 1/n, we can easily obtain s(mt/(Zﬁ))B > t/4/N, so we have
40

41 1 Vvn

2 sn(m2vn)E =t
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1 Then,

2 — _

3 /\f 24U i i /ﬁitm Tt
Z o tan-n+1l u=0tJu sin( \f)ﬁ

5 n

& < lim ftm_q”“‘_l_ﬁdt
7 U—)O+

- < lim tm Bantnyn < 9
— ~u—ot

9

10 Letx=mt/(2,/n), we only need to prove th%t— is an increasing function when®x < /2. We
11 obtain that
12 xm . x™1(sinx)B-1

——— | = (msinx— BcosX:X) ——————
B ((sinx)ﬁ> ( P ) (sinx)2B
15 15 And becausg8 < m and tanx > x when 0< x < 11/2. Therefore, we hav?— IS an increasing
16 function, which implies’4(-) is a non-decreasing function.

17 U]
18
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