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Abstract

This paper considers a thermoelastic laminated beam system with thermal dis-
sipation governed by the Gurtin-Pipkin law. The exponential stability problem of
this system has been addressed by Djellali [1] and Liu and Zhao [2], who showed that
the exponential stability of the system depends on complicated stability numbers
involving the system wave propagation speeds and several other physical parame-
ters of the system. In this paper, we improve the existing results in the literature
by showing that the exponential decay of the energy associated with the system
depends solely on the ratio between the system speeds.

Keywords: Laminated beams; Gurtin-Pipkin thermal law; stability number; exponential
stability.
AMS Subject Classifications: 35B40; 93D15; 74H40.

1 Introduction

In a recent paper, Liu and Zhao [2] considered a laminated beam system with structural
dissipation coupled with a parabolic equation representing the thermal effect given by the
Gurtin-Pipkin law, considering that the temperature affects the effective rotation angle
equation. More precisely, Liu and Zhao considered the following system

ρϕtt +G (ψ − ϕx)x = 0,

Iρ (3w − ψ)tt −D (3w − ψ)xx −G (ψ − ϕx) + δθx = 0,

Iρwtt −Dwxx +G (ψ − ϕx) + 4
3
γw + 4

3
αwt = 0,

kθt − 1
β

∫∞
0
g(s)θxx(x, t− s) ds+ δ (3w − ψ)tx = 0,

(1.1)
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where the functions ϕ, ψ, 3w − ψ, θ and g represent the transverse displacement of the
beam, the rotation angle, the effective rotation angle, the relative temperature and the
memory kernel, respectively. In addition, w is proportional to the amount of slip along the
interface. The laminated beam model (without considering thermal effects) was derived
and proposed by Hansen and Spies (see [3], [4]). In equation (1.1)4, the heat difference
obeys the Gurtin-Pipkin law given by

q = −
∫ ∞
0

g(s)θx (x, t− s) ds,

where q represents the heat flux depending on the history of the temperature gradient due
to the kernel g. The function g = g(s) is the relaxation kernel of the thermal conductivity,
which is a bounded convex function on R+ with total mass∫ ∞

0

g(s)ds = 1. (1.2)

The positive constantsρ, G, Iρ, D, γ and α denote the beam density, the shear stiffness,
the mass moment of inertia, the flexural stiffness, the adhesive stiffness of the beams and
the adhesive damping parameter, respectively. The constants β, k and δ are positive
physical parameters from thermoelasticity theory.

Under some assumptions on the relaxation function g, Liu and Zhao [2] proved the
well-posedness of the system (1.1) and studied the stability of the associated semigroup.
They introduced the stability number χg defined by

χg =

(
D

Iρ
− G

ρ

)(
1− β

g(0)

kG

ρ

)
− β

g(0)

Gδ2

ρIρ
, (1.3)

and proved that the energy associated with the system (1.1) is exponentially stable if and
only if χg = 0. For which they used the perturbed energy method and a characterization
of exponential stability known as the Gearhart-Herbst-Prüss-Huang theorem.

Our aim in this work is to study system (1.1) with the following boundary conditions{
ϕx(0, t) = ψ(0, t) = w(0, t) = θx(0, t) = 0, t > 0,

ϕx(1, t) = ψ(1, t) = w(1, t) = θx(1, t) = 0, t > 0,
(1.4)

and initial data{
ϕ(x, 0) = ϕ0, ϕt(x, 0) = ϕ1, ψ(x, 0) = ψ0, ψt(x, 0) = ψ1, x ∈ (0, 1),

w(x, 0) = w0, wt(x, 0) = w1, θ(x, 0) = θ0, x ∈ (0, 1).
(1.5)

Then, exploiting the energy method, we will obtain an exponential decay result of system
(1.1)-(1.5) provided that the condition

χ =
G

ρ
− D

Iρ
= 0, (1.6)

is satisfied.
Before starting the analysis and proof of our results, we briefly discuss recent achieve-

ments in the stability of beams subjected to different thermal laws.
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Thermoelastic laminated beams under Fourier’s law

Liu and Zhao [5] studied the following system of laminated beams with and without
frictional structural damping under the thermal effect described by Fourier’s law

ρϕtt +G (ψ − ϕx)x = 0,

Iρ (3w − ψ)tt −D (3w − ψ)xx −G (ψ − ϕx) + δθx = 0,

Iρwtt −Dwxx +G (ψ − ϕx) + 4
3
γw + 4

3
αwt = 0,

kθt − αθxx + 3δ (3w − ψ)tx = 0,

(1.7)

Using the perturbed energy method, the authors showed that when α ≥ 0, the system is
the system is exponentially stable if and only if χ = G

ρ
− D

Iρ
= 0.

Still on thermoelastic laminated beam systems with thermal Fourier law, Apalara [6]
considered a system similar to (1.7) with heat distribution acting on the interfacial slip.
A model for the same type of thermoelastic beams with memory term working on the
rotational equation was also studied by Liu and Zhao [7]. More recently, Djellali [8]
studied a model in which the heat distribution acts on the transverse displacement and
rotational equations, proving the exponential decay of the associated energy if and only
if χ = 0. Among other works in the context of thermoelastic and thermoviscoelastic
laminated beams with heat flow governed by Fourier’s law, we can cite Raposo et al. [9],
Choucha et al. [10], Enyi and Mukiawa [11], Nonato et al. [12], Quispe et al. [13] and
Cabanillas et al. [14].

Thermoelastic laminated beams under Cattaneo’s law

Fourier’s law predicts the instantaneous propagation of thermal signals (see [15]); for this
reason, it has been the subject of some criticism in the scientific community due to the
evidence (based on physical experiments) that thermal motion is a wave-like mechanism.
This impasse lies in the physical paradox of the infinite propagation speed of the sig-
nals of the Fourier equation, which is a characteristic of parabolicity. For this reason,
several “non-classical” theories have been proposed as an alternative to the Fourier heat
propagation model. One of these theories is due to Maxwell and Cattaneo [16], whose
heat propagation model introduces a small thermal relaxation parameter that transforms
the heat transfer equation into a hyperbolic equation. The resulting propagation law is
the Maxwell-Cattaneo law, popularly known as the second sound. Thus, by replacing
Fourier’s law with Cattaneo’s law in (1.7), we obtain

ρϕtt +G (ψ − ϕx)x = 0,

Iρ (3w − ψ)tt −D (3w − ψ)xx −G (ψ − ϕx) + δθx = 0,

Iρwtt −Dwxx +G (ψ − ϕx) + 4
3
γw + 4

3
αwt = 0,

kθt + qx + δ (3w − ψ)tx = 0,

τqt + αq + θx = 0,

(1.8)

where θ represents the temperature difference and q is the heat flux. Note that the system
(1.8) reduces to (1.7) when τ = 0.

More recently, Djellali et al. [17] considered the system (1.8) and proved exponential
stability under the condition χ = 0, where χ is the stability number defined in (1.6),
which depends only on the system wave propagation speeds, thus improving the stability
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conditions found by other authors, whose results depend on complicated stability numbers
that not only depend on the wave speeds but also involve several other parameters of the
system parameters. For example, Apalara [18] introduced the stability number

χA =

(
1− τκG

ρ

)(
D

Iρ
− G

ρ

)
− τδ2G

ρIρ
,

showing that the system (1.8) is exponentially stable when χA = 0 and polynomially
stable otherwise. The same result was proved by Feng [19] for a model similar to (1.8)
but with coupling δϕtx instead of the coupling δ (3w − ψ)tx in the fourth equation of (1.8)
and with a stability number χF defined by

χF = τδ2D − (Dρ−GIρ)
(
τkD

Iρ
− 1

)
.

The work of Feng [19] was complemented by Wang and Liu [20], who proved the lack of
exponential stability when χF 6= 0. Mukiawa et al. [21] studied a model similar to (1.8)
to which they added an effective memory term on the angular displacement equation,
proving stability results dependent on the relationship between the system wave speeds.

Thermoelastic laminated beams under Gurtin- Pipkin

The Gurtin and Pipkin theory [22] provides another alternative to describe the tempera-
ture evolution in the laminated beam system. The Gurtin-Pipkin law addresses the need
to link heat flow with thermal memory. It is a general nonlinear theory in which thermal
disturbances propagate at a finite speed.

The inclusion of the Gurtin-Pipkin thermal law as a dissipative effect in systems such
as the Timoshenko, de Bresse, porous and Rao-Nakra systems has been the subject of
several studies in recent years (see, for example, [23], [24], [25], [26], [27], [28], [29]).

In the context of laminated beams with thermal effect obeying the Gurtin-Pipkin law,
as mentioned at the beginning of this section, Liu and Zhao [2] obtained the exponen-
tial stability of the system (1.1) depending on the stability number χg defined in (1.3).
Subsequently, Djellali [1] showed that the system

ρϕtt +G (ψ − ϕx)x + σθx = 0,

Iρ (3w − ψ)tt −D (3w − ψ)xx −G (ψ − ϕx)− σθ = 0,

Iρwtt −Dwxx +G (ψ − ϕx) + 4
3
γw + 4

3
αwt = 0,

kθt − 1
β

∫∞
0
g(s)θxx(x, t− s) ds+ σϕtx + σ (3w − ψ)t = 0,

is exponentially stable if and only if χD = 0, where

χD =

(
Iρ
D
− ρ

G

)(
kD

Iρ
− g(0)

β

)
+
σ2

G
.

The case of infinite-length laminated beams with heat conduction described by the Gurtin-
Pipkin law was addressed by Guesmia [30]. The author showed that the thermoelastic
dissipation generated by the Gurtin-Pipkin law is strong enough to stabilize the system at
least polynomially, even when only the second or third equation of the laminated system
is controlled. For more results in thermoelasticity of type III, we refer to [31], [32], and
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[33] and for thermoelasticity with Coleman-Gurtin’s and Gurtin-Pipkin’s we refer to the
recent works in [34], [35], and [36].

The rest of the paper is structured as follows: In Section 2, we formulate the hypotheses
about the relaxation function g that we will use throughout this manuscript and establish
the functional framework on which we will work. In Section 3, following the ideas of
Dafermos [37], we introduce an auxiliary variable that allows us to write our system as
an abstract Cauchy problem. Then, we construct a semigroup of contractions S(t) on
a suitable Hilbert space H, with which we establish the well-posedness of our system.
Section 4 contains the central result. Using the energy method, we prove some lemmas
and construct a Lyapunov functional that allows us to prove the exponential stability of
the system under the hypothesis of equality of the wave propagation speeds of the system.
In section 5, we study the lack of exponential stability. Finally, Section 6 presents our
conclusions and discusses some open problems.

2 Assumptions and functional setting

Proceeding as in [24], let us denote by µ the function on R+ satisfying∫ ∞
0

µ(s)ds = g(0), (2.1)

whose relation with the relaxation function g is given by

µ(s) = −g′(s),

the prime denoting the derivative with respect to s, and a requirement that g has a total
mass 1 translates to ∫ ∞

0

sµ(s)ds = 1.

Assume that the following conditions are valid:

i ) µ is an absolutely continuous non-negative and non-increasing function on R+ such
that

µ(0) = lim
s→0

µ(s) ∈ (0,∞).

ii ) For almost every s > 0, there exists ν > 0 such that

µ′(s) + νµ(s) ≤ 0.

Hereafter, we denote by 〈·, ·〉 and ‖·‖ the inner product and the usual norm in the
Lebesgue space L2 (0, 1) . Moreover, we introduce the Hilbert subspace

L2
∗(0, 1) =

{
u ∈ L2(0, 1);

∫ 1

0

u(x)dx = 0

}
,

of the zero-mean functions, and its Hilbert subspaces

H1
∗ (0, 1) = H1(0, 1) ∩ L2

∗(0, 1) and H2
∗ (0, 1) = H2(0, 1) ∩ L2

∗(0, 1).
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To deal with the memory term in equation (1.1)4, we introduce the space

M = L2
µ

(
R+;H1

∗ (0, 1)
)
,

endowed with the inner product

〈h, f〉M =

∫ ∞
0

µ(s) 〈hx(s), fx(s)〉L2 ds, for any h, f ∈M,

along with the infinitesimal generator of the right-translation semigroup on M

Tη = −η′,

with domain
D(T ) =

{
η ∈M; η′ ∈M, lim

s→0
‖ηx(s)‖ = 0

}
,

the prime stands for weak derivative with respect to the internal variable s ∈ R+.
The phase space of our problem will be

H = H1
∗ (0, 1)× L2

∗(0, 1)×H1
0 (0, 1)× L2(0, 1)×H1

0 (0, 1)× L2(0, 1)× L2
∗(0, 1)×M,

equipped with inner product〈
U, Ũ

〉
H

= ρ 〈ϕt, ϕ̃t〉+ Iρ

〈
3wt − ψt, 3w̃t − ψ̃t

〉
+ 3Iρ 〈wt, w̃t〉+ k

〈
θ, θ̃
〉

+G
〈
ψ − ϕx, ψ̃ − ϕ̃x

〉
+D

〈
3wx − ψx, 3w̃x − ψ̃x

〉
+ 3D 〈wx, w̃x〉

+ 4γ 〈w, w̃〉+
1

β
〈η, η̃〉M ,

for U = (ϕ, ϕt, 3w − ψ, 3wt − ψt, w, wt, θ, η), Ũ =
(
ϕ̃, ϕ̃t, 3w̃ − ψ̃, 3w̃t − ψ̃t, w̃, w̃t, θ̃, η̃

)
belonging to H, and the induced norm∥∥U∥∥2H = ρ‖ϕt‖2+Iρ‖3wt − ψt‖2+3Iρ‖wt‖2+k‖θ‖2+G‖ψ − ϕx‖2

+D‖3wx − ψx‖2+3D‖wx‖2+4γ‖w‖2+ 1

β
‖η‖2M . (2.2)

The following observation plays a crucial role in this work.

Remark 2.1. For every η ∈ D(T ), the non-negative functional

Γ[η] = −
∫ ∞
0

µ′(s) ‖ηx(s)‖2 ds,

is well defined, and the following identity holds [38]

−Γ[η] = 2 〈Tη, η〉M . (2.3)

Moreover, from hypothese (ii) , we conclude that

ν ‖η‖2M ≤ Γ[η]. (2.4)
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3 The contraction semigroup

In the same spirit of [37], we introduce for s > 0 the new auxiliary variable η = ηt (x, s) :
(0, 1)× [0,∞)× R+ 7−→ R, formally defined as

ηt(x, s) =

∫ s

0

θ(x, t− r) dr, (3.1)

which satisfies the following boundary conditions

ηtx(0, s) = ηtx(1, s) = 0,

and the further “boundary condition”

lim
s→0

ηt(x, s) = 0.

Hence, ηt satisfies the equation
ηtt = −ηts + θ(t),

where ηtt and ηts are the derivatives of η(x, t, s) with respect to t and s respectively. Thus,
our system reduces to

ρϕtt +G (ψ − ϕx)x = 0,

Iρ (3w − ψ)tt −D (3w − ψ)xx −G (ψ − ϕx) + δθx = 0,

Iρwtt −Dwxx +G (ψ − ϕx) + 4
3
γw + 4

3
αwt = 0,

kθt − 1
β

∫∞
0
µ(s)ηxx(s) ds+ δ (3w − ψ)tx = 0,

ηt = Tη + θ.

(3.2)

Now, denoting the effective rotation angle by ξ = 3w−ψ and introducing the state vector

U(t) =
(
ϕ(t), φ(t), ξ(t), v(t), w(t),W (t), θ(t), ηt

)T
,

where φ = ϕt, v = ξt and W = wt. Then, system (3.2) can be rewritten as{
Ut(t) = AU(t), t > 0,

U(0) = U0 = (ϕ0, ϕ1, ξ0, ξ1, w0, w1, θ0, η0)
T ,

(3.3)

the solution of (3.3) at time t > 0 reads

U(t) = S(t)U0 = etAU0,

where A : D(A) ⊂ H → H is the linear operator defined as

AU(t) =



φ
−G

ρ
(3w − ξ − ϕx)x

v
1
Iρ

[Dξxx +G (3w − ξ − ϕx)− δθx]
W

1
Iρ

[
Dwxx −G (3w − ξ − ϕx)− 4γ

3
w − 4α

3
W
]

1
k

[
1
β

∫∞
0
µ(s)ηxx(s) ds− δvx

]
Tη + θ


.
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The domain of A is given by

D(A) =



U ∈ H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕx ∈ H1
0 (0, 1)

φ ∈ H1
∗ (0, 1)

ξ ∈ H2(0, 1)
v ∈ H1

0 (0, 1)
w ∈ H2(0, 1)
W ∈ H1

0 (0, 1)
θx ∈ H1

0 (0, 1)
θ ∈ H1

∗ (0, 1)
η ∈ D(T )∫∞

0
µ(s)η(s)ds ∈ H2

∗ (0, 1)



.

Theorem 3.1. The operator A is the infinitesimal generator of a contraction semigroup

S(t) = etA : H → H.

Theorem 3.1 can be proved by means of the classical Lumer-Phillips theorem [39]. For
applying the Lumer-Phillips Theorem to equations with memory in the context of past
history, see, for example, [40].

Furthermore, for η we have the following explicit representation formula (see [38])

ηt(s) =

{∫ s
0
θ(t− r) dr, s ≤ t,

η0(s− t) +
∫ t
0
θ(t− r) dr, s > t.

Remark 3.2. As was observed in [41], the choice of zero-mean function spaces for ϕ and
θ and their derivatives is consistent. Indeed, calling

Π =

∫ 1

0

ϕ(x, t)dx, and Σ(t) =

∫ 1

0

θ(x, t)dx,

and integrating equations (3.2)1 and (3.2)4 on (0, 1), we obtain

ρ Π̈(t) = 0, and k Σ̇(t) = 0.

Hence, if Π(0) = Π̇(0) = Σ(0) = Σ̇(0) = 0, it follows that Π(t) ≡ Σ(t) ≡ 0.

4 Exponential stability

In this section, we prove an exponential decay result when the propagation speeds of the
system waves (3.2) are equal, i.e., when condition (1.6) is satisfied. First, for any initial
data U0 ∈ H, we define the energy functional E(t) by (2.2) and we also have

E(t) = ‖S(t)U0‖2H = ‖U‖2H . (4.1)

The main result of this section is given by the following theorem.

Theorem 4.1. The semigroup S(t) is exponentially stable if χ = 0.
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4.1 Some auxiliary functionals

In order to prove Theorem 4.1, we will define some functionals and prove some estimates
for them.

Lemma 4.2. The energy functional defined by (4.1) satisfies

d

dt
E(t) =2〈AU, U〉H =

2

β
〈Tη, η〉M − 8α ‖wt‖2

=
1

β

∫ ∞
0

µ′(s) ‖ηx(s)‖2 ds− 8α ‖wt‖2 = − 1

β
Γ [η]− 8α ‖wt‖2 . (4.2)

Proof. Multiplying the first four equations in (3.2) by ϕt, (3wt − ψt) , wt and θt respec-
tively, integrating on (0, 1), using the integration by parts formula, the boundary condi-
tions and then adding the obtained results, we arrive at

d

dt

[
ρ ‖ϕt‖2 +G ‖ψ − ϕx‖2 + Iρ ‖3wt − ψt‖2 +D ‖3wx − ψx‖2

+ 3Iρ ‖wt‖2 + 3D ‖wx‖2 + 4γ ‖w‖2 + ρ3 ‖θ‖2
]

(4.3)

=− 8α ‖wt‖2 +
2

β

∫ 1

0

∫ ∞
0

µ(s)θ(t)ηxx(s)dx ds.

On the other hand, from the fifth equation in (3.2), we get

2

β

∫ 1

0

∫ ∞
0

µ(s)θ(t)ηxx(s)dx ds = − 1

β

d

dt
‖η‖2M+

1

β

∫ ∞
0

µ′(s) ‖ηx(s)‖2 ds. (4.4)

Finally, combining (4.3) and (4.4) completes the proof.

In the following lemmas, we will denote c0, a positive generic constant whose value
may not necessarily be the same from line to line.

Lemma 4.3. Let

Θ(t) =

∫ x

0

θ(y, t)dy,

and let the functional

I1(t) =
ρ3Iρ
δ
〈(3w − ψ)t ,Θ(t)〉 . (4.5)

Then, for any ε1, ε2 > 0, the functional I1 satisfies the estimate

d

dt
I1(t) ≤−

Iρ
2
‖3wt − ψt‖2+ε1‖3wx − ψx‖2+ε2‖ψ − ϕx‖2

+ c0

(
1 +

1

ε1
+

1

ε2

)
‖θ‖2+c0Γ [η] . (4.6)

Proof. Direct computations, using equations (3.2)2 and (3.2)4, integrating by parts and
bearing in mind that ∫ 1

0

θ(x, t) dx = 0, (4.7)
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we get

d

dt
I1(t) = − Iρ‖3wt − ψt‖2+k‖θ‖2+

Iρ
δβ

∫ ∞
0

µ(s) 〈ηx(s), (3w − ψ)t〉 ds

− kD

δ
〈(3w − ψ)x , θ〉+

Gk

δ
〈(ψ − ϕx) ,Θ(t)〉 . (4.8)

By Young’s and Cauchy-Schwarz inequalities, for any ε1, ε2 > 0, we obtain

−kD
δ
〈(3w − ψ)x , θ〉 ≤ c0‖3wx − ψx‖‖θ‖

≤ ε1‖3wx − ψx‖2+
c0
ε1
‖θ‖2, (4.9)

Gk

δ
〈(ψ − ϕx) ,Θ(t)〉 ≤ c0‖ψ − ϕx‖‖Θ‖

≤ ε2‖ψ − ϕx‖2+
c0
ε2
‖Θ‖2

≤ ε2‖ψ − ϕx‖2+
c0
ε2
‖θ‖2. (4.10)

Applying the same inequalities and taking into account the estimate (2.4), we obtain

Iρ
δβ

∫ ∞
0

µ(s) 〈ηx(s), (3w − ψ)t〉 ds ≤ c0‖3wt − ψt‖‖η‖M

≤ Iρ
2
‖3wt − ψt‖2 +c0Γ [η] , (4.11)

Thus, (4.6) follows by simple substitution of (4.9)-(4.11) into (4.8).

Lemma 4.4. Let

Φ(t) =

∫ x

0

ϕ(y, t)dy,

Then, the functional I2 defined by

I2(t) = −ρ 〈Φt, w〉+ Iρ 〈wt, w〉+
2

3
α‖w‖2, (4.12)

satisfies, for any ε3 > 0, the following estimate

d

dt
I2(t) ≤ −D‖wx‖2−

4

3
γ‖w‖2+ε3‖ϕt‖2+c0

(
1 +

1

ε3

)
‖wt‖2. (4.13)

Proof. A simple derivation of I2(t), use of (3.2)1 and (3.2)3, integrating by parts and
bearing in mind that ∫ 1

0

ϕ(x, t) dx = 0,

we obtain
d

dt
I2(t) = −D‖wx‖2−

4

3
γ‖w‖2+Iρ‖wt‖2−ρ 〈Φt, wt〉 .

Use of Young and Cauchy-Schwarz inequalities, gives (4.13).

10



Lemma 4.5. The functional

I3(t) = Iρ 〈ψ − ϕx, wt〉 − Iρ 〈wx, ϕt〉 . (4.14)

satisfies, for ε4 > 0,

d

dt
I3(t) ≤−

G

2
‖ψ − ϕx‖2+ε4‖3wt − ψt‖2+c0

(
1 +

1

ε4

)
‖wt‖2

+ c0‖wx‖2+ Iρ

(
G

ρ
− D

Iρ

)
〈(ψ − ϕx)x , wx〉 . (4.15)

Proof. Differentiating I3(t), using the first and third equations in (3.2) and integrating
by parts we have

d

dt
I3(t) =Iρ 〈ψ − ϕx, wtt〉 − Iρ 〈wx, ϕtt〉+ Iρ 〈ψt, wt〉

=−G‖ψ − ϕx‖2−
4

3
γ 〈ψ − ϕx, w〉 −

4

3
α 〈ψ − ϕx, wt〉

+ Iρ 〈ψt, wt〉+ Iρ

(
G

ρ
− D

Iρ

)
〈(ψ − ϕx)x , wx〉 .

Using the simple relation ψt = 3wt − (3wt − ψt), we have

d

dt
I3(t) = −G‖ψ − ϕx‖2−

4

3
γ 〈ψ − ϕx, w〉 −

4

3
α 〈ψ − ϕx, wt〉+ 3Iρ‖wt‖2

− Iρ 〈(3wt − ψt) , wt〉+ Iρ

(
G

ρ
− D

Iρ

)
〈(ψ − ϕx)x , wx〉 . (4.16)

Thanks to the inequalities of Young and Poincaré, we obtain

−4

3
γ 〈ψ − ϕx, w〉 ≤

G

4
‖ψ − ϕx‖2+c0‖wx‖2, (4.17)

and

−4

3
α 〈ψ − ϕx, wt〉 ≤

G

4
‖ψ − ϕx‖2+c0‖wt‖2. (4.18)

Moreover, for any ε4 > 0, we get

−Iρ 〈(3wt − ψt) , wt〉 ≤ ε4‖3wt − ψt‖2+
c0
ε4
‖wt‖2. (4.19)

Substituting (4.17)-(4.19) into (4.16) yield (4.15).

Lemma 4.6. The functional

I4(t) = − k

g(0)

∫ ∞
0

µ(s)
〈
θ(t), ηt(s)

〉
ds, (4.20)

satisfies, for ε4 > 0, the estimate

d

dt
I4(t) ≤ −

k

2
‖θ‖2+ε4‖3wt − ψt‖2+c0

(
1 +

1

ε4

)
Γ [η] . (4.21)
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Proof. Direct computation, using equations (3.2)4,(3.2)5 and integrating by parts, we
obtain

d

dt
I4(t) =− k

g(0)

∫ ∞
0

µ(s) 〈Tη(s), θ(t)〉 ds+
1

βg(0)

∥∥∥∥∫ ∞
0

µ(s)ηx(s)ds

∥∥∥∥2
− δ

g(0)

∫ ∞
0

µ(s) 〈ηx(s), (3w − ψ)t〉 ds − k‖θ‖2. (4.22)

By virtue of Young’s inequality and applying (2.4), we find

− k

g(0)

∫ ∞
0

µ(s) 〈Tη(s), θ(t)〉 ds = − k

g(0)

∫ ∞
0

µ
′
(s) 〈η(s), θ(t)〉 ds

≤ c0‖θ‖
√

Γ [η]

≤ k
2
‖θ‖2+c0Γ [η] , (4.23)

1

βg(0)

∥∥∥∥∫ ∞
0

µ(s)ηx(s)ds

∥∥∥∥2 ≤ c0‖η‖2M

≤ c0Γ [η] , (4.24)

− δ

g(0)

∫ ∞
0

µ(s) 〈ηx(s), (3w − ψ)t〉 ds ≤ c0‖3wt − ψt‖‖η‖M

≤ ε4‖3wt − ψt‖2 +
c0
ε4

Γ [η] . (4.25)

Simple substitution of (4.23)-(4.25) into (4.22) gives (4.21).

Lemma 4.7. The functional I5(t) defined by

I5(t) = −ρ 〈ϕt(t), ϕ(t)〉 , (4.26)

satisfies, the following estimate

d

dt
I5(t) ≤ −ρ‖ϕt‖2+

D

8
‖3wx − ψx‖2+c0‖ψ − ϕx‖2+c0‖wx‖2. (4.27)

Proof. Differentiating I5, using the first equation in (3.2), integrating by parts and using
the simple equality ϕx = − (ψ − ϕx)− (3w − ψ) + 3w, we get

d

dt
I5(t) = −ρ‖ϕt‖2+G‖ψ − ϕx‖2+G 〈ψ − ϕx, 3w − ψ〉 − 3G 〈ψ − ϕx, w〉 .

Estimate (4.27) follows by exploiting Young’s and Poincaré inequalities.

Lemma 4.8. The functional I6(t) defined by

I6(t) = Iρ 〈3wt − ψt, 3w − ψ〉 , (4.28)

satisfies, the estimate

d

dt
I6(t) ≤ −

D

2
‖3wx − ψx‖2+Iρ‖3wt − ψt‖2+c0‖ψ − ϕx‖2+c0‖θ‖2. (4.29)
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Proof. By exploiting I6(t), using the second equation in (3.2) and integrating by parts,
we find

Iρ (3w − ψ)tt −D (3w − ψ)xx −G (ψ − ϕx) + δθx = 0

d

dt
I6(t) =−D‖3wx − ψx‖2+Iρ‖3wt − ψt‖2+G 〈3w − ψ, ψ − ϕx〉

+ δ 〈3wx − ψx, θ〉 .

Estimate (4.29) easily follows thanks to Young’s and Poincaré inequalities.

Proof of Theorem 4.1

We define the Lyapunov functional F(t) by

F(t) = NE(t) +N1I1(t) +N2I2(t) +N3I3(t) +N4I4(t) + I5(t) + I6(t), (4.30)

where N,N4 (i = 1 : 4) are positive constants to be chosen appropriately later.

Differentiating (4.30), applying the estimates (4.2), (4.6), (4.13), (4.15), (4.21), (4.27),
(4.29), and adding the obtained results, we obtain

F ′
(t) ≤ −

(
Iρ
2
N1 −N3ε4 −N4ε4 − Iρ

)
‖3wt − ψt‖2− (DN2 − c0N3 − c0) ‖wx‖2

−
(
G

2
N3 −N1ε2 − 2c0

)
‖ψ − ϕx‖2−

(
D

2
− D

8
−N1ε1

)
‖3wx − ψx‖2

− (ρ−N2ε3) ‖ϕt‖2−
(
k

2
N4 −N1c0

(
1 +

1

ε1
+

1

ε2

)
− c0

)
‖θ‖2−

(
4

3
γN2

)
‖w‖2

−
(

8αN −N3c0

(
1 +

1

ε4

)
− c0N2

(
1 +

1

ε3

))
‖wt‖2

−
(
N

β
− c0N1 −N4

(
c0

(
1 +

1

ε4

)))
Γ [η] +N3

(
Iρ

(
G

ρ
− D

Iρ

)
〈(ψ − ϕx)x , wx〉

)
Then, taking

ε1 =
D

8N1

, ε2 =
GN3

4N1

, ε3 =
ρ

2N2

, ε4 =
IρN1

4 (N3 +N4)
,

we arrive at

F ′
(t) ≤−

[
Iρ
4
N1 − Iρ

]
‖3wt − ψt‖2− [DN2 − c0N3 − c0] ‖wx‖2

−
[
G

4
N3 − c0

]
‖ψ − ϕx‖2−

D

4
‖3wx − ψx‖2−

ρ

2
‖ϕt‖2

−
[
k

2
N4 − c0N1

(
N1 +

N1

N3

+ 1

)]
‖θ‖2−4

3
γN2‖w‖2

−
[
8αN − c0N2 (N2 + 1)− c0N3

(
1 +

N3 +N4

N1

)]
‖wt‖2

−
[
N

β
− c0N1 − c0N4

(
1 +

N3 +N4

N1

)]
Γ [η] .
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We will carefully choose our parameters so that the bracketed terms are positive. First,
we choose N1 and N3 large enough so that

Iρ
4
N1 − Iρ > 0, and

G

4
N3 − c0 > 0.

Then, we select N2 and N4 large enough so that

DN2 − c0N3 − c0 > 0, and
k

2
N4 − c0N1

(
N1 +

N1

N3

+ 1

)
> 0.

Finally, we choose N very large enough so that

8αN − c0N2 (N2 + 1)− c0N3

(
1 +

N3 +N4

N1

)
> 0,

and
N

β
− c0N1 − c0N4

(
1 +

N3 +N4

N1

)
> 0,

and, further, L ∼ E.

Consequently, there exists a positive constant τ1 such that

L′(t) ≤ −τ1E(t), for all t ≥ 0.

Using the fact that L ∼ E, we infer that

L′(t) ≤ −τ2 L(t), τ2 > 0, for all t ≥ 0.

A simple integration of the last inequality over (0, t), gives

L(t) ≤ L(0) e−τ2 t, for all t ≥ 0.

Consequently, by virtue of L ∼ E, we conclude the exponential stability of the energy.
The proof is now complete.

5 Lack of exponential stability

In the previous section, we proved that if χ = G
ρ
− D

Iρ
= 0, the semigroup S (t) associated

with the system (3.2) is exponentially stable. In this section, we will prove that if the
condition χ = 0 is not valid, the semigroup S (t) is not exponentially stable. For this
purpose, we will use the following characterization of the exponential stability due to
Gearhart, Huang and Pruss (see [42], [43], [44]).

Theorem 5.1. Let % (A) be the resolvent set of the operator A and S (t) = etA be the
C0-semigroup of contractions generated by A. Then S (t) is exponentially stable if and
only if

iR ⊂ %(A) (5.1)

and
lim sup
|β|→∞

‖(iβI −A)−1‖L(H) <∞. (5.2)
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Now, we establish our result of the lack of exponential stability.

Theorem 5.2. Let γg = 1 − β
g(0)

kG
ρ

and let χg be the stability number defined in (1.3).

If χ 6= 0 and γg = 0, or if χχgγg 6= 0, the semigroup S(t) = etA generated by A is not
exponentially stable.

Proof. We will prove that if χ 6= 0, the associated semigroup S (t) is not exponentially
stable. More precisely, we will prove that if χ 6= 0, the condition (5.2) is not satisfied.
Equivalently, we will show that there exists a sequence (λn) ⊂ R such that

|λn| → ∞ (5.3)

and
lim
n→∞

‖(iλnI −A)−1‖L(H) =∞.

Equivalently, we must find a bounded sequence (Fn) ⊂ H such that

lim
n→∞

‖(iλnI −A)−1Fn‖H =∞.

For each n ∈ N, let us denote

Un = (iλnI −A)−1Fn, (5.4)

where

Un =
(
ϕn, φn, ξn, vn, wn,Wn, θn, η

t
n

)
and Fn =

(
f 1
n, f

2
n, f

3
n, f

4
n, f

5
n, f

6
n, f

7
n

)
.

With this notation, we will find a bounded sequence (Fn) ⊂ H such that the sequence
(Un) ⊂ D (A) defined in (5.5) verifies

lim
n→∞

‖Un‖H =∞. (5.5)

Note that the equation (5.4) can be written as

iλnUn −AUn = Fn, n ∈ N, (5.6)

which, when decomposed into its components, gives rise to the following system of equa-
tions

iλnϕn − φn = f 1
n in H1

∗ , (5.7)

iλnφn +
G

ρ
(3wn − ξn − ϕn,x)x = f 2

n in L2
∗, (5.8)

iλnξn − vn = f 3
n in H1

0 , (5.9)

iλnvn −
1

Iρ
[Dξn,xx +G (3wn − ξn − ϕn,x)− δθn,x] = f 4

n in L2, (5.10)

iλnwn −Wn = f 5
n in H1

0 , (5.11)

iλnWn −
1

Iρ

[
Dwn,xx −G (3wn − ξn − ϕn,x)−

4γ

3
wn −

4α

3
Wn

]
= f 6

n in L2, (5.12)

iλnθn −
1

k

[
1

β

∫ ∞
0

µ(s)ηn,xx(s) ds− δvn,x
]

= f 7
n in L2

g1
, (5.13)
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iλnηn − Tηn − θn = f 8
n in L2

g2
, (5.14)

From here, let us consider the sequence

Fn =

(
0,

cos (nπx)

ρ
, 0, 0, 0, 0, 0, 0

)
.

Then, from equations (5.7), (5.9) and (5.11) , we obtain φn = iλnϕn, vn = iλnξn and
Wn = iλnwn. Replacing in the other equations, we obtain

−λ2nϕn +
G

ρ
(3wn − ξn − ϕn,x)x =

cos (nπx)

ρ
inL2

∗,

−λ2nξn −
1

Iρ
[Dξn,xx +G (3wn − ξn − ϕn,x)− δθn,x] = 0 in L2,

−λ2nwn −
1

Iρ

[
Dwn,xx −G (3wn − ξn − ϕn,x)−

4γ

3
wn −

4α

3
iλnwn

]
= 0 in L2,

iλnθn −
1

k

[
1

β

∫ ∞
0

µ(s)ηn,xx(s) ds− δiλnξn,x
]

= 0 in L2
g1

,

iλnηn − Tηn − θn = 0 in L2
g2

,

According to the boundary conditions, we define

ϕn (x) = An cos (nπx) , ξn (x) = Bn sin (nπx) , wn (x) = Cn sin (nπx) ,
θn (x) = Hn cos (nπx) , ηn (x) = Rn cos (nπx) ,

(5.15)

where (An), (Bn) , (Cn) , (Hn) and (Rn) are real sequences to be fixed later. Replacing
(5.15) in the last system of equations, we get



(
G (nπ)2 − ρλ2n

)
An −GnπBn + 3GnπCn = 1

−nπGAn +
(
D (nπ)2 − λ2nIρ +G

)
Bn − 3GCn − δnπHn = 0

3GnπAn − 3GBn +
(
3D (nπ)2 − 3λ2nIρ + 9G+ 4γ + 4αiλn

)
Cn = 0

δβiλnnπBn + iλnkβHn +
∫∞
0
µ(s) (nπ)2Rn (s) ds = 0

iλnRn (s) +R′n (s)−Hn = 0.

(5.16)

Integrating the last equation, we get

Rn (s) =
Hn

iλn

(
1− e−iλns

)
. (5.17)

Substituting (5.17) into the fourth equation of (5.16), we obtain

−δβλ2nnπBn − λ2nkβHn + (nπ)2Hn

∫ ∞
0

µ(s) ds− (nπ)2Hn

∫ ∞
0

µ(s)
(
e−iλns

)
ds = 0.

Then, applying the condition (2.1) on µ and denoting

F̂ (λn) =

∫ ∞
0

µ(s)
(
e−iλns

)
ds,
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the system (5.16) takes the form
(
G (nπ)2 − ρλ2n

)
An −GnπBn + 3GnπCn = 1

−nπGAn +
(
D (nπ)2 − λ2nIρ +G

)
Bn − 3GCn − δnπHn = 0

3GnπAn − 3GBn +
(
3D (nπ)2 − 3λ2nIρ + 9G+ 4γ + 4αiλn

)
Cn = 0

−δβλ2nnπBn +
(
−λ2nkβ + (nπ)2 g (0)− (nπ)2 F̂ (λn)

)
Hn = 0,

If we define
p1 = G (nπ)2 − ρλ2n, p2 = D (nπ)2 − λ2nIρ +G

p3 = 3D (nπ)2 − 3λ2nIρ + 9G+ 4γ + 4αiλn
p4 = −λ2nkβ + (nπ)2 g (0)− (nπ)2 F̂ (λn) ,

the previous system is written as
p1An −GnπBn + 3GnπCn = 1

−nπGAn + p2Bn − 3GCn − δnπHn = 0
3GnπAn − 3GBn + p3Cn = 0
−δβλ2nnπBn + p4Hn = 0.

(5.18)

Then, we choose the sequence (λn) defined as

λn =

√
G

ρ
(nπ) . (5.19)

Thus, we obtain

p1 = 0, p2 = (nπ)2 Pn, p3 = (nπ)2Qn, p4 = (nπ)2 Sn, (5.20)

where

Pn = −Iρχ+
G

(nπ)2
, Qn = −3χIρ +

9G+ 4γ

(nπ)2
+

4αi

nπ

√
G

ρ

and

Sn = g (0) γg − F̂ (λn) , with γg = 1− β

g (0)

kG

ρ
.

By making n→∞, we obtain the following convergences

Pn → −Iρχ , Qn → −3Iρχ , Sn → g (0) γg . (5.21)

The last convergence follows from the Riemann-Lebesgue lemma which guarantees that
F̂ (λn)→ 0. Replacing (5.20) in the system (5.18), this becomes

−GnπBn + 3GnπCn = 1

−nπGAn + (nπ)2 PnBn − 3GCn − δnπHn = 0

3GnπAn − 3GBn + (nπ)2QnCn = 0
−δβGnπBn + ρSnHn = 0.

(5.22)

Using Cramer’s rule, we obtain

An =
− (9G2ρSn − π4n4ρPnQnSn + π4Gn4βδ2Qn)

π2G2n2 (18GρSn − 9π2n2ρPnSn − π2n2ρQnSn + 9π2Gn2βδ2)
.
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Applying the convergences in (5.21), we get

limAn =
π4 (−3Iρχ) (ρIρg (0) γg (−χ)− βGδ2)
π2G2 (12π2ρIρχg (0) γg + 9π2βGδ2)

=
I2ρρg (0)χχg

G2 (4ρIρg (0)χg + βGδ2)
, (5.23)

where χg is the Liu–Zhao stability number defined in (1.3).
Thus, if χ 6= 0 and γg = 0, we have

lim
n→∞

An =
Iρχ

3G2
6= 0.

On the other hand, if χχgγg 6= 0, we get

lim
n→∞

An 6= 0,

provided that the denominator of (5.23) is not zero, i.e., provided that

χg 6= −
βGδ2

4g (0) ρIρ
.

On the other hand, since the determinant ∆n of the system (5.21) is of order 4, that is,
∆n = O (n4) , we conclude that

Bn =
−9π3G2n3δ

∆n

→ 0 and Cn =
−3π3G2n3δ

∆n

→ 0.

Then ‖wn‖, ‖ξn‖→ 0. Consequently

‖Un‖H ≥ G‖3wn − ξn − ϕn,x‖≥ G (‖ϕn,x‖−3‖wn‖−‖ξn‖)
= G (‖An (nπ) cos (nπx) ‖−3‖wn‖−‖ξn‖)

= G

(
|An|

√
nπ

2
− 3‖wn‖−‖ξn‖

)
→∞.

This completes the proof.

6 Conclusions and open problem

In this paper, we proved an exponential stability result for laminated beams with struc-
tural damping combined with heat conduction given by the Gurtin-Pipkin law under the
single condition of equal wave speeds instead of complicated stability conditions involving
the wave speeds and several other system parameters. A suitable definition and handling
of the Lyapunov functionals have allowed us to simplify the exponential stability condi-
tion. The study of polynomial stability when χ 6= 0 is an interesting open problem that
we will address later.
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