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Abstract

The main purpose of this paper is to investigate some existence results for pseudo S-
asymptotically (ω, c)-periodic sequential solutions to a semilinear difference equation of
convolution type and a semilinear Weyl-like fractional difference equation in Banach s-
paces. For this purpose, we first give the definition of the pseudo S-asymptotically (ω, c)-
periodic sequence and prove the completeness, convolution and superposition theorems for
such a sequence in abstract spaces. We show some existence and uniqueness of pseudo S-
asymptotically (ω, c)-periodic sequential solutions under some different Lipschitz type con-
ditions of the nonlinear force term with its second variable. We also consider the existence
of pseudo S-asymptotically (ω, c)-periodic sequential solutions under a non-Lipschitz growth
condition.
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1 Introduction

In this paper, we mainly consider some existence results for pseudo S-asymptotically (ω, c)-
periodic sequential solutions to the following semilinear difference of convolution type

u(n+ 1) = A

n∑
k=−∞

a(n− k)u(k + 1) +

n∑
k=−∞

b(n− k)p(k, u(k)), n ∈ Z, (1.1)

where a(k), b(k) are two suitable scalar-valued sequences to make Eq. (1.1) sense, the operator
A is closed and linear on a Banach space X, p : Z × X → X is a function satisfying some
additional growth conditions which will be specified later, and Z denotes the set of all integers.
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Let a(k) = b(k) = Γ(k+α)
Γ(α)Γ(n+1) in Eq. (1.1) with Gamma function Γ and arbitrarily nonnegative

integer k, we will have the following semilinear fractional difference equation

∆αu(k) = Au(k + 1) + f(k, u(k)), 0 < α ≤ 1, k ∈ Z, (1.2)

where ∆α is understood in Weyl-like fractional difference operator, which was primarily intro-
duced in [1, Definition 2.3]. To ensure the solvability of Eq. (1.2), we here assume that 1 ∈ ρ(A)
(the resolvent set of A) and ∥(I −A)−1∥ ≤ 1, I is the identity operator (see [1, 8]).

Here we first recall some known results for the existence of asymptotically sequential solutions
to Eq. (1.1) or (1.2). Keyantuo, Lizama, Rueda and Warma [18] initially established the
existence and uniqueness of weighted pseudo S-asymptotically ω-periodic and weighted pseudo
almost automorphic mild solutions to Eq. (1.1) by introducing a discrete resolvent family (see
Definition 2.2). Chang and Lü [10] investigated some existence results for weighted pseudo S-
asymptotically ω-antiperiodic mild solutions to Eq. (1.1). Abadias and Lizama [1] presented
the existence and uniqueness of almost automorphic solutions to Eq. (1.2) by introducing
an α-resolvent sequence. Alvarez and Lizama [3] considered the existence and uniqueness of
weighted pseudo almost automorphic solutions and S-asymptotically ω-periodic solutions to Eq.
(1.2). Xia and Wang [27] established some sufficient conditions for the existence, uniqueness of
weighted pseudo S-asymptotically ω-periodic mild solutions to Eq. (1.2). Cao, Samet and Zhou
[9] showed some existence results for asymptotically almost periodic mild solutions to Eq. (1.2).
we notice that asymptotically sequential solutions to Eq. (1.1) or (1.2) in aforementioned works
are considered under the framework of bounded sequences (l∞(Z, X)).

On the other hand, for the following second linear ordinary differential equation

x′′(t) + q(t)x(t) = 0, q(t+ ω) = q(t), ω ̸= 0, (1.3)

It is known from the Floquet theorem that Eq. (1.3) admits at least one constant c ̸= 0 and one
nontrivial solution x(t) such that x(t+ω) = cx(t). The representation x(t+ω) = cx(t) includes
some well-known functions such as the periodic function (c = 1), antiperiodic function (c = −1,
see [23, 24]), Bloch periodic function (c = eikω, see [11, 19]) and some unbounded functions
(|c| ̸= 1), and x(t) is called an (ω, c)-periodic function. The vector-valued (ω, c)-periodic function
in abstract spaces was presented by Alvarez, Gómez and Pinto in [4]. Some generalized (ω, c)-
periodic functions in abstract spaces were also introduced via different ergodic forms. For
instance, (ω, c)-asymptotically periodic functions and (ω, c)-pseudo periodic functions in abstract
spaces with their applications were studied by Alvarez, Castillo and Pinto in [5, 6]. The pseudo
S-asymptotically (ω, c)-periodic function in abstract spaces with applications was considered
by Chang and Zhao in [12]. For more results on (ω, c)-periodic functions with extensions and
applications, we refer to [16, 20, 21, 22] and references cited therein. The (ω, c)-periodic sequence
in abstract spaces was presented by Alvarez, Dı́az and Lizam in [7] as the discrete counterpart
of the (ω, c)-periodic function in [4]. The existence and uniqueness of (ω, c)-periodic sequential
solutions to Eq. (1.2) was established by Alvarez, Dı́az and Lizam in [8], and such asymptotically
sequential solutions to Eq. (1.2) may be unbounded. Since the influence of small perturbations
on (ω, c)-periodic sequences always exists, we naturally need to consider the generalized (ω, c)-
periodic sequences via some ergodic forms.

The first part of this paper is to present the definition and basic properties of the pseudo
S-asymptotically (ω, c)-periodic sequence in abstract spaces, which can be seen as the discrete
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counterpart of the pseudo S-asymptotically (ω, c)-periodic function in [12] and an extension of
the (ω, c)-periodic sequence in [7]. Noting that an (ω, c)-periodic sequence may be unbound-
ed (|c| ̸= 1), we can not deal with the pseudo S-asymptotically (ω, c)-periodic sequence just
under the framework of bounded sequences (l∞(Z, X)). We give the notion of the pseudo
S-asymptotically (ω, c)-periodic sequence by constructing a suitable space l∞ω,c(Z, X) for given
c ∈ C \ 0, ω ∈ Z+ (see Section 3). We prove the convolution theorem and the completeness of
the space of such sequences with a suitable norm in l∞ω,c(Z, X). Some applicable superposition
theorems are also shown for the Nemytskii’s superposition operator of a pseudo S-asymptotically
(ω, c)-periodic sequence.

The second part of this paper is to discuss some existence results for pseudo S-asymptotically
(ω, c)-periodic sequential solutions to Eq. (1.1) and Eq. (1.2). Here we mainly apply the notion
of the pseudo S-asymptotically (ω, c)-periodic sequence and its properties given in the first part
to Eq. (1.1). We prove some existence and uniqueness of pseudo S-asymptotically (ω, c)-periodic
sequential mild solutions to Eq. (1.1) under some different globally Lipschitz type conditions.
We also show some existence results for pseudo S-asymptotically (ω, c)-periodic sequential mild
solutions to Eq. (1.1) with a local Lipschitz or a non-Lipschitz growth condition respectively.

The remainder of the paper is outlined as follows: Section 2 is Preliminaries which include
some basic notions, lemmas and notations which will be used throughout this paper. Section 3 is
mainly focused the pseudo S-asymptotically (ω, c)-periodic sequence and its properties. Section
4 is mainly concerned with some existence results for pseudo S-asymptotically (ω, c)-periodic
sequential solutions.

2 Preliminaries

Let notations R, Z+(R+), Z+(R+) and C denote the set of all real numbers, positive integers
(real numbers), nonnegative integers (real numbers) and complex numbers respectively. Let X
be a Banach space and l∞(Z, X) denotes the Banach space consists of all bounded sequences
u : Z → X with sup norm ∥u∥∞ = sup

k∈Z
∥u(k)∥. The space F (Z, X) represents the set formed by

all sequences u : Z → X. We denote by B(X) the space of all bounded linear operators from X

to X. For a given v : Z(Z+) → C and 1 ≤ q < ∞, if
∞∑
k∈Z

|v(k)|q < ∞(
∞∑
k=0

|v(k)|q < ∞), then v

is called a q-th summable sequence; particularly v is called a summable sequence if q = 1. For
other unmentioned notations and definitions, we refer to [2, 14, 18].

Definition 2.1 [7] For given c ∈ C \ {0}, ω ∈ Z+, a sequence f ∈ F (Z, X) is said to be
(ω, c)-periodic if f(k + ω) = cf(k) for all k ∈ Z. ω is called the c-period of f .

We denote by Pω,c(Z, X) the set of all (ω, c)-periodic sequences from Z to X. When c = 1
(ω-periodic case) we write Pω(Z, X) instead of Pω,1(Z, X). Using the principal branch of the

complex Logarithm, c
k
ω is defined as c

k
ω := exp( kωLog(c)) = c∧(k) and we will use notation

|c|(k) = |c∧(k)| = |c|
k
ω (see [4]).

Definition 2.2 [18, Definition 3.2] Let A be a closed linear operator with its domain D(A)
defined on a Banach space X. Assume that a, b are two scalar-valued sequences. An operator-
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valued sequence {S(k)}k∈Z+ ⊂ B(X) is called a discrete resolvent family generated by A if it
verifies the following conditions:

(1) S(k)(X) ⊂ D(A), and S(k)Ax = AS(k)x for all x ∈ D(A) and k ∈ Z+;

(2) For x ∈ D(A) and k ∈ Z+, S(k)x = b(k)x+A
k∑

i=0

a(k − i)S(k)x.

For more results on properties and applications of the discrete resolvent family {S(k)}k∈Z+ , we
can refer to [1, 3, 18, 25, 26] and the references cited therein.

We recall a compactness criterion established in [2] and well-known fixed point theorems.
Let h : Z → R+ be a function satisfying that h(n) ≥ 1 for all n ∈ Z and h(n) → ∞ as |n| → ∞.
We consider the space

Ch(Z, X) =

{
u : Z → X

∣∣∣ lim
|n|→∞

∥u(n)∥
h(n)

= 0

}
,

which is a Banach space endowed with the norm ∥u∥h = sup
n∈Z

∥u(n)∥
h(n)

, see [2] for details.

Lemma 2.1 [2] A subset K ⊆ Ch(Z, X) is a relatively compact set in Ch(Z, X) if it verifies the
following conditions:

(i) The set Qn(K) =
{u(n)

h(n)
: u ∈ K

}
is relatively compact in X for all n ∈ Z.

(ii) K is weighted equiconvergent at ±∞, that is for any ϵ > 0, there exists a constant N > 0
such that ∥u(n)∥ ≤ ϵh(n) for each |n| ≥ N and all u ∈ K.

Lemma 2.2 [17, Banach fixed point theorem] Let (Z, d) be a complete metric space and Υ :
Z → Z. If there exist constants L̄ ∈ [0, 1) and n0 ∈ N such that

d(Υn0(x),Υn0(y)) ≤ L̄d(x, y), for all x, y ∈ Z,

then Υ has a unique fixed point in Z, where Υ2x = Υ(Υx),Υ3x = Υ(Υ2x), · · · ,Υn0x =
Υ(Υn0−1x), · · · .

Lemma 2.3 [17, Schaefer fixed point theorem] Let Y be a normed linear space with O ⊂ Y
convex and 0 ∈ O. Assume that Υ : O → O is a completely continuous operator. If the set

ϵ(Υ) = {x ∈ O : x = λΥx for some λ ∈ (0, 1)}

is bounded, then Υ has at least one fixed point in O.
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3 Pseudo S-asymptotically (ω, c)-periodic sequences

In this section, we introduce the notion of the pseudo S-asymptotically (ω, c)-periodic se-
quence and establish some of its fundamental properties.
For given c ∈ C \ {0}, ω ∈ Z+, we define the following set

l∞ω,c(Z, X) =
{
f ∈ F (Z, X) : sup

n∈Z
∥c∧(−n)f(n)∥

}
< +∞.

For the set l∞ω,c(Z,X), we have the following property.

Proposition 3.1 Let f ∈ F (Z, X). Then f ∈ l∞ω,c(Z, X) if and only if f(n) = c∧(n)u(n),
u ∈ l∞(Z, X).

Proof: It is clear that f ∈ l∞ω,c(Z, X) if f(n) = c∧(n)u(n) with u ∈ l∞(Z, X). For the inverse
statement, let f ∈ l∞ω,c(Z, X) and if we write u(n) = c∧(−n)f(n), then we have

∥u∥∞ = sup
n∈Z

∥c∧(−n)f(n)∥ < +∞.

So u ∈ l∞(Z, X) and f(n) = c∧(n)u(n).

Theorem 3.1 The set l∞w,c(Z, X) is a Banach space with the norm

∥f∥∞ω,c = sup
n∈Z

∥c∧(−n)f(n)∥.

Proof: It is clear that f1 + f2 ∈ l∞ω,c(Z, X) and kf ∈ l∞ω,c(Z, X) for each f1, f2 ∈ l∞ω,c(Z, X) and
any k ∈ C. Thus l∞ω,c(Z, X) forms a vector space. It is also easy to check that ∥ · ∥∞ω,c defines
a norm in l∞ω,c(Z, X). Let {fp}p∈Z+⊆ l∞ω,c(Z, X) be a Cauchy sequence. By Proposition 3.1, we
can rewrite fp(n) = c∧(n)up(n) with up ∈ l∞(Z, X). The relationship ∥up−uq∥∞ = ∥fp−fq∥∞ω,c
implies that {up}p∈Z+ is also a Cauchy sequence in the Banach space l∞(Z, X), and thus there
exists a sequence u ∈ l∞(Z, X) such that lim

p→∞
∥up(n)− u(n)∥∞ = 0. Consequently,

lim
p→∞

sup
n∈Z

∥c∧(−n)c∧(n)up(n)− c∧(−n)c∧(n)u(n)∥ = 0,

that is, fp(n) → f(n) := c∧(n)u(n) with ∥ · ∥∞ω,c in l∞ω,c(Z, X).

Definition 3.1 A sequence f ∈ l∞ω,c(Z, X) is said to be S-asymptotically (ω, c)-periodic if

lim
|n|→∞

∥c∧(−n)[f(n+ ω)− cf(n)]∥ = 0, ∀n ∈ Z.

The collection of such sequences will be denoted by SAPω,c(Z, X).

Lemma 3.1 Let f1, f2, f ∈ SAPω,c(Z, X). Then the following results hold:

(1) f1 + f2 ∈ SAPω,c(Z, X), and kf ∈ SAPω,c(Z, X) for any k ∈ C.

(2) The sequence fa(n) := f(n+ a) ∈ SAPω,c(Z, X) for each a ∈ Z.
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Proof: (1) From the Definition 3.1, for any ε > 0, there exists a constant Tε > 0 such that

∥c∧(−n)[f(n+ ω)− cf(n)]∥ ≤ ε
|k| , ∥c

∧(−n)[fi(n+ ω)− cfi(n)]∥ ≤ ε
2 , i = 1, 2

for each |n| > Tε. Hence,

∥c∧(−n)[kf(n+ ω)− ckf(n)]∥ ≤ |k|∥c∧(−n)[f(n+ ω)− cf(n)]∥ ≤ ε,

and

∥c∧(−n)[f1(n+ ω) + f2(n+ ω)− c(f1(n) + f2(n))]∥
≤∥c∧(−n)[f1(n+ ω)− c(f1(n))]∥+ c∧(−n)[f2(n+ ω)− c(f2(n))]∥

≤ε

2
+

ε

2
= ε.

The above arguments imply f1 + f2, kf ∈ SAPω,c(Z, X).
(2) By the Definition 3.1, for any ε > 0, there exists a constant Tε > 0 such that

∥c∧(−n)[f(n+ ω)− cf(n)]∥ ≤ ε
|c∧(a)|

for |n| > Tε. Thus we can deduce that

∥c∧(−n)[f(n+ a+ ω)− cf(n+ a)]∥
=∥c∧(a)c∧(−n− a)[f(n+ a+ ω)− cf(n+ a)]∥
=|c∧(a)|∥c∧(−n− a)[f(n+ a+ ω)− cf(n+ a)]∥ ≤ ε

for |n| > T = max{Tε − a, Tε + a}, which implies that fa ∈ SAPω,c(Z, X).

Theorem 3.2 The space (SAPω,c(Z, X), ∥ · ∥∞ω,c) is a Banach space.

Proof: Lemma 3.1 implies that SAPω,c(Z, X) is a vector space. Let {fp}p∈Z+ ⊆ SAPω,c(Z, X)
converge to f as p → ∞. Then for any ε > 0, we can choose suitable constants N > 0 and
Tε > 0 such that

∥fp − f∥∞ω,c = sup
n∈Z

∥c∧(−n)[fp(n)− f(n)]∥ ≤ ε

3|c|
,

∥c∧(−n)[fp(n+ ω)− cfp(n)]∥ ≤ ε

3

for p > N and |n| > Tε. Thus

∥c∧(−n)[f(n+ ω)− cf(n)]∥
=∥c∧(−n)[f(n+ ω)− fp(n+ ω) + fp(n+ ω)− cfp(n) + cfp(n)− cf(n)]∥
≤|c|∥c∧(−n− ω)[f(n+ ω)− fp(n+ ω)]∥+ ∥c∧(−n)[f(np + ω)− cfp(n)]

+ |c|∥c∧(−n)[fp(n)− f(n)]∥

≤ε

3
+

ε

3
+

ε

3
= ε,

which implies that the SAPω,c(Z, X) is a closed sub-space of l∞ω,c(Z, X). Thus it is a Banach
space equipped with ∥ · ∥∞ω,c.
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Definition 3.2 A sequence f ∈ l∞ω,c(Z, X) is called pseudo S-asymptotically (ω, c)-periodic if it
satisfies

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + ω)− cf(k)]∥ = 0, k ∈ Z.

The collection of such functions will be denoted by DPSAPω,c(Z, X).

Lemma 3.2 Let f1, f2, f ∈ DPSAPω,c(Z, X). Then the following results hold:

(1) f1 + f2 ∈ DPSAPω,c(Z, X), and lf ∈ DPSAPω,c(Z, X) for any l ∈ C.

(2) The sequence fa(n) := f(n+ a) ∈ DPSAPω,c(Z, X) for each a ∈ Z.

Proof: (1)By Definition 3.2, we have for any l ∈ C and i = 1, 2

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + ω)− cf(k)]∥ = 0,

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[fi(k + ω)− cfi(k)]∥ = 0.

Hence,

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f1(k + ω) + f2(k + ω)− c(f1(k) + f2(k))]∥

≤ lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f1(k + ω)− cf1(k)]∥

+ lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f2(k + ω)− cf2(k)]∥

=0;

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[lf(k + ω)− clf(k)]

≤ lim
n→∞

|l| 1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + ω)− cf(k)]∥ = 0.

It follows from above arguments that f1 + f2, lf ∈ DPSAPω,c(Z, X).
(2) By the Definition 3.2, we have

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + ω)− cf(k)]∥ = 0, k ∈ Z.
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Thus for each a ∈ Z

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + a+ ω)− cf(k + a)]∥

= lim
n→∞

1

2n+ 1

n+a∑
k=−n+a

∥c∧(−k + a)[f(k + ω)− cf(k)]∥

≤ lim
n→∞

1

2n+ 1

n+|a|∑
k=−n+|a|

∥c∧(−k)c∧(a)[f(k + ω)− cf(k)]∥

≤ lim
n→∞

|c∧(a)|(n+ |a|+ 1)

n+ 1
2

1

2(n+ |a|+ 1)

n+|a|∑
k=−n+|a|

∥c∧(−k)c∧(a)[f(k + ω)− cf(k)]∥

=0,

which implies that fa ∈ DPSAPω,c(Z,X).

Theorem 3.3 The space (DPSAPω,c(Z, X), ∥ · ∥∞ω,c) is a Banach space.

Proof: It follows from Lemma 3.2 that DPSAPω,c(Z, X) is a vector space. Let {fp}p∈Z+ ⊆
DPSAPω,c(Z, X) converge to f as n → ∞. Then for any ε > 0, we can choose suitable constants
N > 0 and nε such that

∥fp − f∥∞ω,c = sup
n∈Z

∥c∧(−n)[fp(n)− f(n)]∥ ≤ ε

3|c|
,

1

2n+ 1

n∑
k=−n

∥c∧(−k)[fp(k + ω)− cfp(k)]∥ ≤ ε

3

for p > N and n > nε. Thus

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + ω)− cf(k)]∥

=
1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + ω)− fp(k + ω) + fp(k + ω)

− cfp(k) + cfp(k + ω)]− cf(k)∥

≤ 1

2n+ 1

n∑
k=−n

|c|∥c∧(−k − ω)[f(k + ω)− fp(k + ω)]∥

+
1

2n+ 1

n∑
k=−n

∥c∧(−k)[fp(k + ω)− cfp(k)]∥

+
1

2n+ 1

n∑
k=−n

|c|∥c∧(−k)[fp(k)− f(k)]∥
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≤|c|∥fp − f∥∞ω,c +
1

2n+ 1

n∑
k=−n

∥c∧(−k)[fp(k + ω)− cfp(k + ω)]∥

+ |c|∥fp − f∥∞ω,c
≤ε

3
+

ε

3
+

ε

3
= ε,

which implies that the DPSAPω,c(Z, X) is a closed sub-space of l∞ω,c(Z, X). So it is a Banach
space equipped with ∥ · ∥∞ω,c.

Lemma 3.3 Let f ∈ l∞ω,c(Z, X). Then the following assertions are equivalent:

(a) lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + ω)− cf(k)]∥ = 0.

(b) For each ε > 0, lim
n→∞

1

2n+ 1

∑
k∈Mn,ε(f)

= 0, where

Mn,ε(f) = {k ∈ [−n, n] ∩ Z : ∥c∧(−k)[f(k + ω)− cf(k)]∥ ≥ ε}.

Proof: Since

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + ω)− cf(k)]∥

=
1

2n+ 1

∑
[−n,n]\k∈Mn,ε(f)

∥c∧(−k)[f(k + ω)− cf(k)]∥

+
1

2n+ 1

∑
k∈Mn,ε(f)

∥c∧(−k)[f(k + ω)− cf(k)]∥

≥ 1

2n+ 1

∑
k∈Mn,ε(f)

∥c∧(−k)[f(k + ω)− cf(k)]∥

≥ ε

2n+ 1

∑
k∈Mn,ε(f)

≥ 0,

we can verify the assertion(b) if the assertion (a) is true. On the other hand,

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + ω)− cf(k)]∥

=
1

2n+ 1

∑
k∈[−n,n]\Mn,ε(f)

∥c∧(−k)[f(k + ω)− cf(k)]∥

+
1

2n+ 1

∑
k∈Mn,ε(f)

∥c∧(−k)[f(k + ω)− cf(k)]∥
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≤
(
1− 1

2n+ 1

∑
k∈Mn,ε(f)

)
ε+

1

2n+ 1
2|c|∥f∥∞ω,c

∑
k∈Mn,ε(f)

,

thus we can confirm the assertion (a) by the truth of the assertion (b).
We have the following convolution property.

Theorem 3.4 Let {S(n)}n∈Z+ ⊆ B(X). Assume further that {c∧(−n)S(n)}n∈Z+ is summalbe.
If f ∈ DPSAPω,c(Z, X), then

u(n) :=

n∑
k=−∞

S(n− k)f(k) ∈ DPSAPω,c(Z,X).

Proof: Since {c∧(−n)S(n)}n∈Z+ is summable and f ∈ DPSAPω,c(Z, X), we have

∞∑
k=0

∥c∧(−k)S(k)∥ < ∞, f(n) = c∧(n)p(n), p(n) ∈ l∞(Z, X).

Hence u(n) =
n∑

k=−∞
S(n− k)f(k) = c∧(n)

∞∑
k=0

c∧(−k)S(k)p(n− k)

and

∥
∞∑
k=0

c∧(−k)S(k)p(n− k)∥ ≤
∞∑
k=0

∥c∧(−k)S(k)p(n− k)∥

≤∥p∥∞
∞∑
k=0

∥c∧(−k)S(k)∥ < ∞,

which hints that
∞∑
k=0

c∧(−k)S(k)p(n− k) ∈ l∞(Z, X), u(n) ∈ l∞ω,c(Z, X). It also follows from the

Fubini theorem that

1

2n+ 1

n∑
k=−n

∥c∧(−k)[u(k + ω)− cu(k)]∥

=
1

2n+ 1

n∑
k=−n

∥c∧(−k)[

k+ω∑
m=−∞

S(k + ω −m)f(m)− c

k∑
m=−∞

S(k −m)f(m)]∥

=
1

2n+ 1

n∑
k=−n

∥c∧(−k)[

k∑
m=−∞

S(k −m)f(m+ ω)− c

k∑
m=−∞

S(k −m)f(m)]∥

=
1

2n+ 1

n∑
k=−n

∥c∧(−k)

∞∑
m=0

S(m)[f(k −m+ ω)− cf(k −m)]∥

≤ 1

2n+ 1

n∑
k=−n

∞∑
m=0

∥c∧(−k)S(m)[f(k −m+ ω)− cf(k −m)]∥
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=
∞∑

m=0

∥c∧(−m)S(m)∥[ 1

2n+ 1

n∑
k=−n

∥c∧(−k +m)[f(k −m+ ω)− cf(k −m)]∥.

By f ∈ DPSAPω,c(Z, X), Lemma 3.2(2) and the dominated convergence theorem, we have

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[u(k + ω)− cu(k)]∥ = 0.

Thus u ∈ DPSAPω,c(Z, X).
For given ϕ ∈ DPSAPω,c(Z, X) and f ∈ F (Z ×X,X), we define the Nemytskii’s superpo-

sition operator by Nf (ϕ)(·) := f(·, ϕ(·)). We present the following superposition theorems for
Nf (ϕ).

Theorem 3.5 Let f ∈ F (Z×X,X) satisfy the following conditions :

(A1) (a) For any bounded subset Q ⊆ X, sup
n∈Z

∥c∧(−n)f(n, c∧(n)x)∥ < ∞ uniformly for x ∈ Q.

(b) lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k + ω, cx)− cf(k, x)]∥ = 0 uniformly for x ∈ X.

(A2) There exists a constant L > 0 such that for all x, y ∈ X and n ∈ Z,

∥f(n, x)− f(n, y)∥ ≤ L∥x− y∥.

Then for each ϕ ∈ DPSAPω,c(Z, X), Nf (ϕ) ∈ DPSAPω,c(Z, X).

Proof: For each ϕ ∈ DPSAPω,c(Z, X), we have

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[ϕ(k + ω)− cϕ(k)]∥ = 0, k ∈ Z.

On the other hand,

1

2n+ 1

n∑
k=−n

∥c∧(−k)[Nf (ϕ)(k + ω)− cNf (ϕ)(k)]∥

=
1

2n+ 1

n∑
k=−n

∥∥∥c∧(−k)
[
f(k + ω, ϕ(k + ω))− cf

(
k,

1

c
ϕ(k + ω)

)
+cf

(
k,

1

c
ϕ(k + ω)

)
− cf(k, ϕ(k))

]∥∥∥
≤ 1

2n+ 1

n∑
k=−n

∥∥∥c∧(−k)
[
f(k + ω, ϕ(k + ω))− cf

(
k,

1

c
ϕ(k + ω)

)]∥∥∥
+

1

2n+ 1

n∑
k=−n

∥∥∥c∧(−k)
[
cf

(
k,

1

c
ϕ(k + ω)

)
− cf(k, ϕ(k))

]∥∥∥
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=I1 + I2.

By (A1)(b), we have I1 → 0 as n → ∞. For I2, we have

lim
n→∞

1

2n+ 1

n∑
k=−n

∥∥∥c∧(−k)
[
cf

(
k,

1

c
ϕ(k + ω)

)
− cf(k, ϕ(k))

]∥∥∥
≤ lim

n→∞

1

2n+ 1

n∑
k=−n

|c∧(−k + ω)|
∥∥∥[f(k, 1

c
ϕ(k + ω)

)
− f(k, ϕ(k))

]∥∥∥
≤ lim

n→∞

1

2n+ 1

n∑
k=−n

|c∧(−k + ω)|L
∥∥∥1
c
ϕ(k + ω)− ϕ(k)

∥∥∥
=L lim

n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[ϕ(k + ω)− cϕ(k)]∥ = 0.

So lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[Nf (ϕ)(k + ω) − cNf (ϕ)(k)]∥ = 0, i.e. Nf (ϕ) ∈ DPSAPω,c(Z, X).

Theorem 3.6 Let f ∈ F (Z×X,X) satisfy (A1) and the following condition:

(A3) fn(z) := c∧(−n)f(n, c∧(n)z) is uniformly continuous for z in any bounded subset of X
uniformly in n ∈ Z; that is, for any ε > 0 and any bounded subset Q ⊆ X, there exists δ
such that x, y ∈ Q and ∥x− y∥ < δ imply that

∥fn(x)− fn(y)∥ = ∥c∧(−n)[f(n, c∧(n)x)− f(n, c∧(n)y)]∥ ≤ ε, n ∈ Z.

Then for each ϕ ∈ DPSAPω,c(Z, X), Nf (ϕ) ∈ DPSAPω,c(Z, X).

Proof: From (A1)(a), we have f(·, ϕ(·)) ∈ l∞ω,c(Z, X) and there exists a constant M > 0 such
that sup

n∈Z
∥c∧(−n)f(n, c∧(n)x)∥ ≤ M for all x ∈ Q. Meanwhile,

1

2n+ 1

n∑
k=−n

∥c∧(−k)[Nf (ϕ)(k + ω)− cNf (ϕ)(k)]∥

≤ 1

2n+ 1

n∑
k=−n

∥∥∥c∧(−k)
[
f(k + ω, ϕ(k + ω))− cf

(
k,

1

c
ϕ(k + ω)

)]∥∥∥
+

1

2n+ 1

n∑
k=−n

∥∥∥c∧(−k)
[
cf

(
k,

1

c
ϕ(k + ω)

)
− cf(k, ϕ(k))

]∥∥∥
=I1 + I2.

It is obvious that lim
n→∞

I1 = 0. For I2, we choose bounded subset Q = {c∧(−k)ϕ(k) : k ∈ Z}. If
∥c∧(−n)[ϕ(k + ω)− cϕ(k)] < |c|δ, then
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∥c∧(−k − ω)ϕ(k + ω)− c∧(−k)ϕ(k)∥ = ∥1
c c

∧(−k)[ϕ(k + ω)− cϕ(k)]∥ < δ.

By (A3), we have

1

2n+ 1

n∑
k=−n

∥∥∥c∧(−k)
[
cf

(
k,

1

c
ϕ(k + ω)

)
− cf(k, ϕ(k))

]∥∥∥
=|c| 1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k, c∧(k)c∧(−k − ω)ϕ(k + ω))

− f(k, c∧(k)c∧(−k)ϕ(k))]∥

=|c| 1

2n+ 1

∑
k∈[−n,n]\Mn,|c|δ(ϕ)

∥c∧(−k)[f(k, c∧(k)c∧(−k − ω)ϕ(k + ω))

− f(k, c∧(k)c∧(−k)ϕ(k))]∥

+ |c| 1

2n+ 1

∑
Mn,|c|δ(ϕ)

∥c∧(−k)[f(k, c∧(k)c∧(−k − ω)ϕ(k + ω))

− f(k, c∧(k)c∧(−k)ϕ(k))]∥

≤
(
1− 1

2n+ 1

∑
k∈Mn,|c|δ(ϕ)

)
|c|ε+ 2M |c| 1

2n+ 1

∑
k∈Mn,|c|δ(ϕ)

.

By ϕ ∈ DPSAPω,c(Z, X), Lemma 3.3 and the arbitrariness of ε, we have lim
n→∞

I2 = 0. Hence,

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[Nf (ϕ)(k + ω)− cNf (ϕ)(k)]∥ = 0, i.e. Nf (ϕ) ∈ DPSAPω,c(Z, X).

We recall the following set.

g(n) = {v : Z → R+ and lim
n→∞

1

2n+ 1

n∑
k=−n

v(k) < ∞}.

Theorem 3.7 Let f ∈ F (Z×X,X) satisfy (A1) and the following condition:

(A4) There exists a sequence L(·) ∈ g(n) such that for any ε > 0 and any bounded subset
Q ⊆ X, there is a constant δ > 0 satisfying

∥c∧(−n)[f(n, c∧(n)x)− f(n, c∧(n)y)]∥ ≤ L(n)ε

for all x, y ∈ Q with ∥x− y∥ < δ and n ∈ Z.

Then for each ϕ ∈ DPSAPω,c(Z, X), Nf (ϕ) ∈ DPSAPω,c(Z, X).

Proof: From (A1)(a), we have f(·, ϕ(·)) ∈ l∞ω,c(Z, X) and there exists a constant M > 0 such
that sup

n∈Z
∥c∧(−n)f(n, c∧(n)x)∥ ≤ M for all x ∈ Q.

On the other hand,

1

2n+ 1

n∑
k=−n

∥c∧(−k)[Nf (ϕ)(k + ω)− cNf (ϕ)(k)]∥
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≤ 1

2n+ 1

n∑
k=−n

∥∥∥c∧(−k)
[
f(k + ω, ϕ(k + ω))− cf

(
k,

1

c
ϕ(k + ω)

)]∥∥∥
+

1

2n+ 1

n∑
k=−n

∥c∧(−k)[cf(k,
1

c
ϕ(k + ω))− cf(k, ϕ(k))]∥

=I1 + I2.

It is clearly that lim
n→∞

I1 = 0. For I2, we choose bounded subset Q = {c∧(−k)ϕ(k) : k ∈ Z}. If

∥c∧(−n)[ϕ(k + ω)− cϕ(k)] < |c|δ, then

∥c∧(−k − ω)ϕ(k + ω)− c∧(−k)ϕ(k)∥ = ∥1
c c

∧(−k)[ϕ(k + ω)− cϕ(k)]∥ < δ.

By (A4), we have

1

2n+ 1

n∑
k=−n

∥c∧(−k)[cf(k,
1

c
ϕ(k + ω))− cf(k, ϕ(k))]∥

=|c| 1

2n+ 1

n∑
k=−n

∥c∧(−k)[f(k, c∧(k)c∧(−k − ω)ϕ(k + ω))

− f(k, c∧(k)c∧(−k)ϕ(k))]∥

=|c| 1

2n+ 1

∑
k∈[−n,n]\Mn,|c|δ(ϕ)

∥c∧(−k)[f(k, c∧(k)c∧(−k − ω)ϕ(k + ω))

− f(k, c∧(k)c∧(−k)ϕ(k))]∥

+ |c| 1

2n+ 1

∑
Mn,|c|δ(ϕ)

∥c∧(−k)[f(k, c∧(k)c∧(−k − ω)ϕ(k + ω))

− f(k, c∧(k)c∧(−k)ϕ(k))]∥

≤|c|ε 1

2n+ 1

n∑
k=−n

L(k) + 2M |c| 1

2n+ 1

∑
k∈Mn,|c|δ(ϕ)

.

From Lemma 3.3, L(·) ∈ g(n) and the arbitrariness of ε, we have lim
n→∞

I2 = 0, and thus

lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[Nf (ϕ)(k + ω) − cNf (ϕ)(k)]∥ = 0, i.e. Nf (ϕ) ∈ DPSAPω,c(Z, X).

Corollary 3.1 Let f ∈ F (Z×X,X) satisfy (A1) and the following condition:

(C1) For any bounded subset Q ⊆ X, there exists a sequence L(·) ∈ g(n) such that

∥c∧(−n)[f(n, c∧(n)x)− f(n, c∧(n)y)]∥ ≤ L(n)∥x− y∥

for all x, y ∈ Q and n ∈ Z.

Then for each ϕ ∈ DPSAPω,c(Z, X), Nf (ϕ) ∈ DPSAPω,c(Z, X).
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Pseudo S-asymptotically (ω,c)-periodic sequential solutions 15

Proof: It is easy to check that (A4) in Theorem 3.7 holds if (C1) is satisfied. So the conclusion
is a direct consequence of Theorem 3.7.

Corollary 3.2 Let f ∈ F (Z×X,X) satisfy (A1) and the following condition:

(C2) For any bounded subset Q ⊆ X, there exists a function L(n) ∈ lp(Z, R+)(1≤ p < ∞) such
that

∥c∧(−n)[f(n, c∧(n)x)− f(n, c∧(n)y)]∥ ≤ L(n)∥x− y∥

for all x, y ∈ Q and n ∈ Z.

Then for each ϕ ∈ DPSAPω,c(Z, X), Nf (ϕ) ∈ DPSAPω,c(Z, X).

Proof: Since

1

2n+ 1

n∑
k=−n

L(k) =
1

2n+ 1

n∑
k=−n

1× L(k)

≤ 1

2n+ 1
[

n∑
k=−n

L(k)p]
1
p [

n∑
k=−n

11−p]
1

1−p

=
1

2n+ 1
[

n∑
k=−n

L(k)p]
1
p [2n+ 1]

1
1−p

=
1

(2n+ 1)
1
p

[
n∑

k=−n

L(k)p]
1
p

≤[

n∑
k=−n

L(k)p]
1
p ,

we have that L(·) ∈ g(n) if L ∈ lp(Z, R+)(1 ≤ p < ∞). So (C1) in Corollary 3.1 holds by (C2)
and the assertion is true.

4 Existence results

In this section,we show some existence results for pseudo S-asymptotically (ω, c)-periodic se-
quential mild solutions to Eq. (1.1).

Definition 4.1 Let A generate a discrete resolvent family {S(k)}k∈Z+ ⊆ B(X) and p : Z×X →
X. A sequence u : Z → X is called a mild solution to Eq. (1.1) if k → S(n − k)p(k, u(k)) is
summalbe on Z for each n ∈ Z and u verifies

u(n+ 1) =

n∑
k=−∞

S(n− k)p(k, u(k)), n ∈ Z.

In what follows, we always assume that c ∈ C \ 0, ω ∈ Z+ and Q is bounded subset of X. Let
us list the following hypotheses:
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(DA) Let the operatorA generate a discrete resolvent family {S(k)}k∈Z+ ⊆ B(X) and c∧(−n)S(n)
is summable.

(D1) (1) For any bounded subset Q ⊆ X, sup
n∈Z

∥c∧(−n)p(n, c∧(n)x)∥ < ∞ uniformly for x ∈ Q.

(2) lim
n→∞

1

2n+ 1

n∑
k=−n

∥c∧(−k)[p(k + ω, cx)− cp(k, x)]∥ = 0 uniformly for x ∈ X.

Lemma 4.1 Let conditions (DA) and (D1) hold. Assume further that p : Z×X → X satisfies
the following condition:

(D2) There exists a function Lp : Z+ → R+ such that for each r ≥ 0 and all u, v in any bounded
subset Q of X with ∥u∥ ≤ r, ∥v∥ ≤ r,

∥c∧(−k)[p(k, c∧(k)u)− p(k, c∧(k)v)]∥ ≤ Lp(r)∥u− v∥, k ∈ Z.

Then for each u ∈ DPSAPω,c(Z, X), P (n) :=
n∑

k=−∞
S(n− k)p(k, u(k)) ∈ DPSAPω,c(Z, X).

Proof: For each given u ∈ DPSAPω,c(Z, X), {c∧(−k)u(k)} is bounded and there exists a
bounded subset Q of X such that c∧(−k)u(k) ∈ Q for all k ∈ Z. It follows from the condition
(D2) that c∧(−k)p(k, c∧(k)u) is uniformly continuous on the bounded subset Q uniformly for
k ∈ Z. Thus we have from Theorem 3.5 together with conditions (D1) and (D2) that p(·, u(·)) ∈
DPSAPω,c(Z, X) if u ∈ DPSAPω,c(Z, X). It further follows from the condition (DA) and
Theorem 3.4 that P (n) ∈ DPSAPω,c(Z, X) for each u ∈ DPSAPω,c(Z, X).

Lemma 4.2 Assume that conditions (DA) and (D1) hold. Let p : Z × X → X be a function
that satisfies the following condition:

(D3) There exists a summable function Lp(·) : Z → R+ such that

∥c∧(−k)[p(k, c∧(k)u)− p(k, c∧(k)v)]∥ ≤ Lp(k)∥u− v∥, ∀u, v ∈ Q, k ∈ Z.

Then P (n) :=
n∑

k=−∞
S(n− k)p(k, u(k)) ∈ DPSAPω,c(Z, X) whenever u ∈ DPSAPω,c(Z, X).

Proof: It follows from Corollary 3.2 together with conditions (D1) and (D3) that p(·, u(·)) ∈
DPSAPω,c(Z, X) for each u ∈ DPSAPω,c(Z, X). Thus we have from Theorem 3.4 with the
condition (DA) that P (n) ∈ DPSAPω,c(Z, X) whenever u ∈ DPSAPω,c(Z, X).

Lemma 4.3 Let p : Z×X → X be a function that satisfies assumption (D1). Assume further
that the following conditions hold:

(D4) There exists a q-th summable (1 ≤ q < ∞) function Lp(·) : Z → R+ such that

∥c∧(−k)[p(k, c∧(k)u)− p(k, c∧(k)v)]∥ ≤ Lp(k)∥u− v∥, ∀u, v ∈ Q, k ∈ Z.
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(D5) There exist constants δ > 0, M > 0 such that ∥c∧(−k)S(k)∥ ≤ Me−δk for all k ∈ Z+.

Then P (n) :=
n∑

k=−∞
S(n− k)p(k, u(k)) ∈ DPSAPω,c(Z, X) whenever u ∈ DPSAPω,c(Z, X).

Proof: The condition (D5) implies that the condition (DA) holds. It follows from Corollary
3.2 together with conditions (D1) and (D4) that p(·, u(·)) ∈ DPSAPω,c(Z, X) for each u ∈
DPSAPω,c(Z, X). Thus P (n) ∈ DPSAPω,c(Z, X) whenever u ∈ DPSAPω,c(Z, X) through
Theorem 3.4.

Lemma 4.4 Let conditions (DA) and (D1) hold. Assume that p ∈ F (Z × X,X) satisfies the
following condition:

(D6) pn(z) := c∧(−n)p(n, c∧(n)z) is uniformly continuous for z in any bounded subset of X
uniformly in n ∈ Z.

Then P (n) :=

n∑
k=−∞

S(n− k)p(k, u(k)) ∈ DPSAPω,c(Z, X) whenever u ∈ DPSAPω,c(Z, X).

Proof: The proof can be conducted directly through Theorems 3.4 and 3.6 together with
conditions (DA), (D1) and (D6).

The following result is concerned with a local Lipschitz growth condition on the function
c∧(−k)p(k, c∧(k)·) for all k ∈ Z.

Theorem 4.1 Suppose that conditions (DA), (D1) and (D2) are satisfied. Assume further that
the following condition hold:

(D7) sup
r>0

[|c|r − rLp(r)∥S∥c] > ∥S∥c sup
k∈Z

∥c∧(−k)p(k, 0)∥, where ∥S∥c =
∞∑
k=0

∥c∧(−k)S(k)∥.

Then Eq.(1.1) has a mild solution u ∈ DPSAPω,c(Z, X), which is unique on an arbitrarily closed
ball Br of the space DPSAPω,c(Z, X) with its center at 0 and radius r satisfying the condition
(D7).

Proof: Let the operator P : DPSAPω,c(Z, X) → DPSAPω,c(Z, X) be defined by

(Pu)(n) =

n−1∑
k=−∞

S(n− 1− k)p(k, u(k)). (4.1)

We obtain from Lemma 4.1 that P is well-defined for each u ∈ DPSAPω,c(Z, X). We also
deduce from the condition (D7) that there exists a constant r > 0 such that

|c|r − rLp(r)∥S∥c > ∥S∥c sup
k∈Z

∥c∧(−k)p(k, 0)∥. (4.2)

Let B = {u ∈ DPSAPω,c(Z, X) : ∥u∥∞ω,c ≤ r}, which is a closed subset of the Banach space
DPSAPω,c(Z, X). We show that P(B) ⊆ B. For each u ∈ B and all n ∈ Z, we have

∥c∧(−n)(Pu)(n)∥
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≤ |c∧(−n)|
n−1∑

k=−∞
∥c∧(k)S(n− 1− k)∥∥c∧(−k)p(k, c∧(k)c∧(−k)u(k))∥

≤ 1

|c|

n−1∑
k=−∞

∥c∧(k − n+ 1)S(n− 1− k)∥∥c∧(−k)[p(k, c∧(k)c∧(−k)u(k))− p(k, 0)]∥

+
1

|c|

n−1∑
k=−∞

∥c∧(k − n+ 1)S(n− 1− k)∥∥c∧(−k)p(k, 0)∥

≤ 1

|c|
[
sup
k∈Z

∥c∧(−k)p(k, 0)∥+ rLp(r)
]
∥S∥c,

from which with (4.2) we have ∥Pu∥∞ω,c ≤ r and thus P(B) ⊆ B.
Next it is shown for the contraction of P on the set B. From (4.2), we have |c|r−rLp(r)∥S∥c >

0, i.e. 1
|c|Lp(r)∥S∥c < 1. Thus for each u, v ∈ B and all n ∈ Z, we have

∥c∧(−n)(Pu)(n)− (Pv)(n)∥ =
∥∥∥ n−1∑
k=−∞

S(n− 1− k)
(
p(k, u(k))− p(k, v(k))

)∥∥∥
≤

n−1∑
k=−∞

∥S(n− 1− k)∥∥p(k, u(k))− p(k, v(k))∥

≤ 1

|c|
Lp(r)∥S∥c∥u− v∥∞ω,c,

which implies ∥Pu−Pv∥∞ω,c ≤ 1
|c|Lp(r)∥S∥c∥u− v∥∞ω,c. Thus P is a contraction on B and admits

a unique fixed point u ∈ B, which is also a mild solution u ∈ DPSAPω,c(Z, X) to Eq. (1.1).
Next we establish some existence and uniqueness of pseudo S-asymptotically (ω, c)-periodic

sequential mild solutions to Eq. (1.1) under global Lipschitz growth conditions on the function
c(−k)p(k, c∧(k)·) for all k ∈ Z. The first result is concerned with a Lipschitz constant coefficient
L > 0.

Corollary 4.1 Assume that conditions (DA), (D1) and (D2) hold. If Lp(·) ≡ L > 0 with
1
|c|L∥S∥c < 1, then Eq. (1.1) has a unique mild solution u ∈ DPSAPω,c(Z, X).

Proof: Since 0 < 1
|c|L∥S∥c < 1 and ∥S∥c sup

k∈Z
∥c∧(−k)p(k, 0)∥ < ∞, there exists a constant

r∗ > 0 such that r∗ >
∥S∥c|c| supk∈Z ∥c∧(−k)p(k, 0)∥

1− 1
|c|L∥S∥c

. Thus for all r > r∗, we have |c|r −

rL∥S∥c > ∥S∥c sup
k∈Z

∥c∧(−k)p(k, 0)∥, i.e. (4.2) is satisfied for all r > r∗. It is inferred from the

proof of Theorem 4.1 that Eq. (1.1) admits a unique solution u ∈ DPSAPω,c(Z, X).
The second result is involved in the Lipschitz growth condition on c∧(−k)p(k, c∧(k)·) for all

k ∈ Z with a summable coefficient Lp : Z → R+.

Theorem 4.2 Let conditions (DA), (D1) and (D3) hold. Then Eq.(1.1) admits a unique mild
solution u ∈ DPSAPω,c(Z, X).
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Proof: Let the operator P be defined by (4.1). For each u ∈ DPSAPω,c(Z, X), we have from
Lemma 4.2 that (Pu)(n) ∈ DPSAPω,c(Z, X). Thus P : DPSAPω,c(Z, X) → DPSAPω,c(Z, X)
is well-defined. It is deduced by the condition (DA) that sup

n∈Z
∥c∧(−n)S(n)∥ ≤ M for a suitable

constant M > 0. For each u, v ∈ DPSAPω,c(Z, X) and all n ∈ Z, we have

∥c∧(−n)[(Pu)(n)− (Pv)(n)]∥

≤ |c∧(−n)|
n−1∑

k=−∞
∥S(n− 1− k)∥∥p(k, u(k))− p(k, v(k))∥

=
1

|c|

n−1∑
k=−∞

∥c∧(k + 1− n)S(n− 1− k)∥∥c∧(−k)[p(k, u(k))− p(k, v(k))]∥

≤ M

|c|

( n−1∑
k=−∞

Lp(k)
)
∥u− v∥∞ω,c.

Generally, by [13, Lemma 3.2.] and mathematical induction, we have

∥c∧(−n)[(Pmu)(n)− (Pmv)(n)]∥

≤ 1

|c|

n−1∑
k=−∞

∥c∧(k + 1− n)S(n− 1− k)∥∥c∧(−k)[p(k, (Pm−1u)(k))

−p(k, (Pm−1v)(k))]∥

≤ (M)m

|c|m(m− 1)!

[ n−1∑
k=−∞

Lp(k)

( k−1∑
j=−∞

Lp(j)

)m−1]
∥u− v∥∞ω,c

≤ (M)m

|c|mm!

( n−1∑
k=−∞

Lp(k)

)m

∥u− v∥∞ω,c

≤
(M|c|∥Lp∥1)m

m!
∥u− v∥∞ω,c,

which implies that ∥Pmu − Pmv∥∞ω,c ≤
(M|c|∥Lp∥1)m

m!
∥u − v∥∞ω,c. Since

(M|c|∥Lp∥1)m

m!
< 1 for a

sufficiently large m ∈ Z+, we conclude from the Banach fixed point theorem (see Lemma 2.2)
that P has a unique fixed point u ∈ DPSAPω,c(Z, X) which is a mild solution to Eq. (1.1).

The third result is related to the Lipschitz growth condition on c∧(−k)p(k, c∧(k)·) for all
k ∈ Z with a q-th summable coefficient Lp : Z → R+.

Theorem 4.3 Suppose that conditions (D1), (D4) and (D5) are satisfied. Then Eq. (1.1) has

a unique mild solution u ∈ DPSAPω,c(Z, X) provided that ∥Lp∥q ≤ |c|
M

( eq̃δ

eq̃δ − 1

)−1/q̃
, where

q̃ =
q

q − 1
, ∥Lp∥q :=

( ∞∑
j=−∞

(L (j))q
)1/q

, 1 < q < ∞.
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Proof: Similarly, consider the operator P defined by (4.1). It follows from Lemma 4.3 that
(Pu)(n) ∈ DPSAPω,c(Z, X) for each u ∈ DPSAPω,c(Z, X). For all n ∈ Z and each u, v ∈
DPSAPω,c(Z, X), we have

∥c(−n)[(Pu)(n)− (Pv)(n)]∥

≤ 1

|c|

n−1∑
k=−∞

∥c(−n+ 1 + k)S(n− 1− k)∥∥c(−k)[p(k, u(k))− p(k, v(k))]∥

≤ 1

|c|

n−1∑
k=−∞

∥c(−n+ k + 1)S(n− 1− k)∥Lp(k)∥u− v∥∞ω,c

=
1

|c|

∞∑
k=0

∥c(−k)S(k)∥Lp(n− 1− k)∥u− v∥∞ω,c

≤ M
|c|

∥Lp∥q
( ∞∑

m=0

e−mq̃δ
)1/q̃

∥u− v∥∞ω,c

≤ M
|c|

∥Lp∥q
( eq̃δ

eq̃δ − 1

)1/q̃
∥u− v∥∞ω,c.

Therefore,

∥Pu− Pv∥∞ω,c ≤
M
|c|

∥Lp∥q
( eq̃δ

eq̃δ − 1

)1/q̃
∥u− v∥∞ω,c,

which implies that P is a contraction from ∥Lp∥q ≤ |c|
M

( eq̃δ

eq̃δ − 1

)−1/q̃
. Thus Eq. (1.1) has a

unique mild solution u ∈ DPSAPω,c(Z, X).

Finally, we investigate the existence of pseudo S-asymptoticallty (ω, c)-periodic mild solu-
tions to Eq. (1.1) with non-Lipschitz growth condition on the function c(−k)p(k, c∧(k)·), k ∈ Z.

Theorem 4.4 Suppose that conditions (DA), (D1) and (D6) are satisfied. Assume further that
the following conditions hold:

(D8) There exists a nondecreasing function Wp : R+ → R+ such that ∥p(k, u)∥ ≤ Wp(∥u∥) for
all k ∈ Z and u ∈ X.

(D9) For each ξ > 0, lim
|n|→∞

1

h(n)

n−1∑
k=−∞

∥S(n− k − 1)∥Wp(ξh(k)) = 0.

(D10) For each ϵ > 0, there exists δ > 0 such that for every u, v ∈ Ch(Z, X), ∥u−v∥h ≤ δ implies

that
n∑

k=−∞
∥S(n− k)∥∥p(k, u(k))− p(k, v(k))∥ ≤ ϵ for all n ∈ Z.

(D11) lim inf
r→∞

β(r)

r
< 1, where β(r) = sup

n∈Z

[ 1

h(n+ 1)

n∑
k=−∞

∥S(n− k)∥Wp(rh(k))
]
.
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(D12) For all a, b ∈ Z with a ≤ b and each r > 0, the set {p(k, u) : k ∈ [a, b], ∥u∥ ≤ r} is relatively
compact in X.

(D13) For each ϵ > 0, there exists δ > 0 such that for every u, v ∈ Ch(Z, X), ∥u−v∥h ≤ δ implies
that ∥c∧(−k)[p(k, u(k))− p(k, v(k))]∥ ≤ ϵ for all k ∈ Z.

Then Eq. (1.1) admits at least one mild solution u ∈ DPASPω,c(Z, X).

Proof: Let Br(Y ) be a closed ball with center at 0 and radius r in the space Y . Define the
operator P on Ch(Z, X) in the form (4.1). For each u ∈ Ch(Z, X), it follows from the condition
(D8) that

∥(Pu)(n)∥ ≤
n−1∑

k=−∞
∥S(k)∥Wp(∥u(k)∥) ≤

n−1∑
k=−∞

∥S(k)∥Wp(∥u∥hh(k)).

Thus we have lim
|n|→∞

∥(Pu)(n)∥
h(n)

= 0 by the condition (D9), which shows that P : Ch(Z, X) →

Ch(Z, X) is well-defined. We shall prove that P admits a fixed point u ∈ DPSAPω,c(Z, X). For
the sake of convenience, we divide the main proof into the following steps.

Step 1.We show that P is completely continuous. Firstly, we show that P is continuous.
For any ϵ > 0, let δ > 0 be chosen in the condition (D10). If u, v ∈ Ch(Z, X) with ∥u− v∥h ≤ δ,
then we have

∥(Pu)(n)− (Pv)(n)∥ ≤
n−1∑

k=−∞
∥S(n− k − 1)∥∥p(k, u(k))− p(k, v(k))∥ ≤ ϵ.

Since h(n) ≥ 1, we obtain that
∥(Pu)(n)− (Pv)(n)∥

h(n)
≤ ϵ for all n ∈ Z. Thus ∥Pu− Pv∥h ≤ ϵ,

which proves the claim.

Secondly, let V = P(Br(Ch(Z, X))) be defined by v = Pu for u ∈ Br(Ch(Z, X)). We show

that Qn(V ) :=
{v(n)

h(n)
: v ∈ V

}
is relatively compact in X for each n ∈ Z. From the condition

(D9), for any ϵ > 0 we can choose a ∈ Z+ such that
1

h(n)

∞∑
k=a

∥S(k)∥Wp(rh(n− k− 1)) ≤ ϵ. For

each u ∈ Br(Ch(Z, X)), we have

v(n)

h(n)
=

1

h(n)

a−1∑
k=0

S(k)p(n− k − 1, u(n− k − 1))

+
1

h(n)

∞∑
k=a

S(k)p(n− k − 1, u(n− k − 1))

=
a

h(n)

[1
a

a−1∑
k=0

S(k)p(n− k − 1, u(n− k − 1))
]
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+
1

h(n)

∞∑
k=a

S(k)p(n− k − 1, u(n− k − 1)).

By
1

h(n)

∥∥∥∥ ∞∑
k=a

S(k)p(n−k−1, u(n−k−1))

∥∥∥∥ ≤ 1

h(n)

∞∑
k=a

∥S(k)∥Wp(rh(n−k−1)) ≤ ϵ, we obtain

that
v(n)

h(n)
∈ a

h(n)
conv(K) +Bϵ(X), where conv(K) denotes the convex hull of K and

K =

a−1∪
k=0

{
S(k)p(ξ, u) : ξ ∈ [n− a, n− 1]

∩
Z, ∥u∥ ≤ rmaxh(ξ)

}
.

Since Qn(V ) ⊆ a

h(n)
conv(K)+Bϵ(X) and K is relatively compact from the condition (D12), we

infer that Qn(V ) is relatively compact in X for all n ∈ Z. On the other hand, it follows from
conditions (D8)-(D9) that

∥v(n)∥
h(n)

≤ 1

h(n)

n−1∑
k=−∞

∥S(n− k − 1)∥Wp(rh(k)) → 0, |n| → ∞,

and this convergence is independent of u ∈ Br(Ch(Z, X)). Hence by Lemma 2.1, V is relatively
compact in Ch(Z, X).

Step 2. We show that the set Q :=
{
uλ : uλ = λP

(
uλ

)
, λ ∈ (0, 1)

}
is bounded. Let

uλ ∈ Ch(Z, X) be a solution to the equation uλ = λP
(
uλ

)
for some λ ∈ (0, 1). Then we have

the estimate

∥∥uλ(n)∥∥ ≤
n−1∑

k=−∞
∥S(n− k − 1)∥Wp

(∥∥uλ∥∥
h
h(k)

)
≤ h(n)β

(∥∥uλ∥∥
h

)
.

Thus we have ∥∥uλ∥∥
h

β
(∥∥uλ∥∥

h

) ≤ 1,

and together with the condition (D11), we can prove the assertion.
Step 3. We show that P has a fixed point u ∈ DPSAPω,c(Z, X). It is known from

Lemma 4.4 that P(DPSAPω,c(Z, X)) ⊆ DPSAPω,c(Z, X). Consequently, we can consider

the operator P : DPSAPω,c(Z, X)
h → DPSAPω,c(Z, X)

h
(the closure in Ch(Z, X)) and P

is completely continuous from Steps 1-2. Since Q is bounded, we can obtain that P has a

fixed point u ∈ DPSAPω,c(Z, X)
h
by the Schaefer fixed point theorem (see Lemma 2.3). Let

{un} ⊆ DPSAPω,c(Z, X) be such that ∥un − u∥h → 0 as n → ∞. Then we have

∥Pun − u∥∞ω,c = ∥Pun − Pu∥∞ω,c

≤ sup
n∈Z

|c(−n)|
( n−1∑

k=−∞
∥S(n− k − 1)∥∥p(k, un(k))− p(k, u(k))∥

)
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≤ sup
n∈Z

1

|c|

( n−1∑
k=−∞

∥c(−n+ k + 1)S(n− k − 1)∥∥c(−k)[p(k, un(k))− p(k, u(k))]∥
)

which implies by the condition (D13) that ∥Pun − u∥∞ω,c → 0 as n → ∞ uniformly in Z.
Since un ∈ DPSAPω,c(Z, X), we have u ∈ DPSAPω,c(Z, X), i.e. Eq. (1.1) admits a pseudo
S-asymptotically (ω, c)-periodic sequential mild solution.

At the end of this paper, we give some examples to illustrate the validity of our main results.
For more interesting examples and applications corresponding to Eq. (1.1), we can refer to
[1, 3, 18] and references therein.

Example 4.1 Let X := L2[0, 1]. Assume that a(n) = 1
a

(
1− 1

(1+a)n+1

)
and b(n) = 1− n−1

2n+2 . We

consider the following differential-difference equation

u(n+ 1, x) =

n∑
k=−∞

a(n− k)
∂2

∂x2
u(k + 1, x) +

n∑
k=−∞

b(n− k)p(k, u(k, x)), n ∈ Z, x ∈ [0, 1]. (4.3)

Define the operator A := ∂2

∂x2u on X with domain D(A) := {u ∈ L2[0, π] : u′′ ∈ L2[0, 1];u(0) =
u(1) = 0}. Thus Eq. (4.3) can be converted into Eq. (1.1) with u(k) := u(k, ·). Moreover,
the operator A generates a bounded analytic C0-semigroup on X (see [15, Example 4.8]). It
also follows from [18, Theorem 3.9] that the operator A with above choices of a, b generates a
summable discrete resolvent family {S(k)}k∈Z+ satisfying ∥S(k)∥ ≤ M , M > 0 for all k ∈ Z.

Take p(k, u) = η
sin(u+ 1)

e|2k|
(η > 0) and c = e. Thus we have for all ω ∈ Z+

lim
n→∞

1

2n+ 1

n∑
k=−n

∥p(k + ω, u)− cp(k,−u)∥e−
k
ω

= lim
n→∞

1

2n+ 1

n∑
k=−n

∥∥∥η sin(u+ 1)

e|2k|
− cη

sin(−u+ 1)

e|2k|

∥∥∥e− k
ω

≤ lim
n→∞

η

2n+ 1

n∑
k=−n

( 1

e|k|
e−

k
ω

e|k|
+

ce−
k
ω

e|2k|

)
≤ lim

n→∞

η

2n+ 1

[( n∑
k=0

e−
k
ω

e2k
+

ce−
k
ω

e2k

)
+

( n∑
k=0

e
k
ω

e2k
+

ce
k
ω

e2k

)]
= 0

and sup
n∈Z

c(−n)p(n, c∧(n)x) = sup
k∈Z

c(−n)η
sin(c∧(n)x+ 1)

e|2n|
< ∞.

It shows that the condition (D1) holds. On the other hand, we have

∥c(−k)[p(k, c∧(k)u)− p(k, c∧(k)v)]∥2X =
∥∥∥c(−k)

[
η
sin(c∧(k)u+ 1)

e|2k|
− η

sin(c∧(k)v + 1)

e|2k|

]∥∥∥2
X

≤ |c(−k)|2 η2

e|4k|
∥ sin(c∧(k)u+ 1)− sin(c∧(k)v + 1)∥2X

≤ |[c(−k)]|2η2∥c∧(k)u− c∧(k)v∥2X
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≤ η2∥u− v∥2X

for each u, v ∈ X, k ∈ Z. Hence for η small enough, Eq. (4.3) admits a unique solution
u ∈ DPASPω,c(Z, X) via Corollary 4.1.

Let a(k) = b(k) = Γ(k+α)
Γ(α)Γ(n+1) , A := λ ∈ C with Reλ < 0. Then we can have the following

scalar-valued difference equation

∆αu(n) = λu(n+ 1) + f(n), 0 < α ≤ 1, n ∈ Z, (4.4)

where ∆α is fractional difference in Weyl-like sense, f ∈ l∞ω,c(Z,C). It is known from [1, Theorem
3.5] that λ generates a summable discrete resolvent family {Sα(n)}n∈Z+ given by

Sα(n) =
(−1)n

n!

((
sα − λ

)−1
)(n)

|s=1

.

Thus the solution of Eq. (4.4) can be formulated in the form u(n + 1) =
n∑

k=−∞
Sα(n − k)f(k).

It follows from Theorem 3.4 that u ∈ DPSAPω,c(Z, X) if f ∈ DPSAPω,c(Z, X). Here we give
numerical simulations for solutions of Eq. (4.4) whenever α = 1/2, λ = −1/10 and let ω = 4. In

Figure 1, we have f1(k) = e
k
8 cos(πk/2) + e−|k|4 , k ∈ Z for c = e

1
2 , whereas in Figure 2, we have

f2(k) = e
k
16 cos(πk/2) + e−|k|3 , k ∈ Z for c = e

1
4 . The notation denotes values of u at n.

-16 -8 8 16

n

-4

-3

-2

-1

1

2

3

u(n)=4,c=exp(1/2), =1/2, =-1/10

Figure 1: Solution u(n) for the case f1 on the interval [−16, 16].
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-16 -8 8 16

n

-1.5

-1

-0.5

0.5

1

1.5

u(n)
=4,c=exp(1/4), =1/2, =-1/10

Figure 2: Solution u(n) for the case f2 on the interval [−16, 16].
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