JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS

Vol., No., YEAR

https://doi.org/jie.YEAR..PAGE

2 3 4 5 6 7 8 9 10 11

16

25

30

31

34

38 -

COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE BV_p SPACE

VARAYU BOONPOGKRONG AND TUAN SENG CHEW

ABSTRACT. In this paper, compact operators and integral equations in terms of integral kernel in the BV_p space will be considered. The BV_p space is the space of all bounded p-variation on a compact interval. The integral used in this paper is of Stieltjes-type. The integral is an integration with respect to a function of bounded p-variation. A fractional Brownian motion in the stochastic integral is a processes of bounded p-variation.

In this paper, let BV_p be the space of all bounded p-variation defined on a compact interval [a,b]. We shall consider compact operators $K: BV_p \to BV_p$ where K are defined by

$$(K\varphi)(x) = \int_{a}^{b} k(x,t)\varphi(t)dg(t).$$

Integral equations considered are of the form

$$\varphi = \psi + \lambda K \varphi.$$

The integral $\int_a^b f(t)dg(t)$ used here is the Kurzweil-Henstock-Young integral, which is a Stieltjes-type integral. When $f \in BV_p$ and $g \in BV_q$, where $\frac{1}{p} + \frac{1}{q} > 1$ and $p,q \ge 1$, then the integral $\int_a^b f(t)dg(t)$ exists, see [3,7,12]. The kurzweil-Henstock approach is used to handle the integral, for the Kurzweil-Henstock approach, see [8,11].

1. Preliminaries

In this section, we shall present some results proved by L.C. Young in 1936, see [7, 12].

Definition 1. Let $f:[a,b] \to \mathbb{R}$ and let $0 . Given a partition <math>P = \{[u_i,v_i]\}_{i=1}^n$ of [a,b], let

$$V_p(f, P; [a, b]) = \left(\sum_{i=1}^n |f(v_i) - f(u_i)|^p\right)^{1/p}.$$

The p-variation of f is defined by

$$V_p(f; [a,b]) = \sup_{P} V_p(f,P; [a,b]).$$

36 We say that f is of bounded p-variation on [a,b] or $f \in BV_p[a,b]$, if $V_p(f;[a,b]) < \infty$. In this paper, we always denote $BV_p[a,b]$ and $V_p(f;[a,b])$ by BV_p and $V_p(f)$, respectively.

39 ... 40 2020 M

2020 Mathematics Subject Classification. 26A39, 26A42, 45B05.

Key words and phrases. Compact operators, Integral equations, Bounded *p*-variation, Kurzweil-Henstock integral, Young-Stieltjes integral.

1

From Jensen's inequality, we have

From Jensen's inequality, we have
$$\left(\sum |f(v_i) - f(u_i)|^q\right)^{1/q} \le \left(\sum |f(v_i) - f(u_i)|^p\right)^{1/p}$$

- whenever $0 . If <math>f \in BV_p$ and $0 , then <math>V_q(f; [a, b]) \le V_p(f; [a, b]) < \infty$, i.e., $f \in BV_q$. <u>5</u> Hence, we have $BV_p \subseteq BV_q$.
- If $f \in BV_p$, then f is bounded. Thus $||f||_{\infty}$ exists. Let $||f||_{V_p} = V_p(f) + ||f||_{\infty}$. It is well-known that $(BV_p, ||\cdot||_{V_p})$ is a Banach space, if $p \ge 1$.
- **Theorem 1.** [3, Theorem 2.2; 12, p. 256, (6.2)]Let $f \in BV_p$ and $g \in BV_q$, with p, q > 0 and $\frac{1}{p} + \frac{1}{q} > 1$. Then, for any partition $P = \{[t_i, t_{i+1}]\}_{i=1}^n$ of [a, b] and $\xi = t_i$ for some i = 1, 2, ..., n + 1,

$$\left| \sum_{i=1}^{n} f(t_{i+1}) \left(g(t_{i+1}) - g(t_i) \right) - f(\xi) \left(g(b) - g(a) \right) \right| \le \left\{ 1 + \zeta \left(\frac{1}{p} + \frac{1}{q} \right) \right\} V_p(f) V_q(g),$$

- where $\zeta\left(\frac{1}{p} + \frac{1}{q}\right) = \sum_{n=1}^{\infty} n^{-\left(\frac{1}{p} + \frac{1}{q}\right)}$.
- **Corollary 1.** [3, Corollary 2.3; 12, p. 257, (6.4)]Let $f \in BV_p$ and $g \in BV_q$, with p,q > 0 and $\frac{1}{p} + \frac{1}{q} > 1$. Then, for any two partitions, $D = \{[t_i, t_{i+1}]\}_{i=1}^n$ and $D' = \{[s_j, s_{j+1}]\}_{j=1}^m$ of [a, b], with any $\frac{1}{18} \xi_i \in [t_i, t_{i+1}], \eta_i \in [s_i, s_{i+1}], \text{ we have }$
- $\left| (D) \sum_{i} f(\xi_i) \left(g(t_{i+1}) g(t_i) \right) (D') \sum_{i} f(\eta_j) \left(g(s_{j+1}) g(s_j) \right) \right| \le 2 \left\{ 1 + \zeta \left(\frac{1}{p} + \frac{1}{q} \right) \right\} V_p(f) V_q(g),$
- 21 22 where $\zeta(\frac{1}{p} + \frac{1}{q}) = \sum_{n=1}^{\infty} n^{-(\frac{1}{p} + \frac{1}{q})}$.

A finite collection $P = \{I\}$ of nonoverlapping closed subintervals of [a, b] is said to be a partition of [a,b] if $\bigcup_{I\in P}I=[a,b]$. Let δ be a positive function on [a,b] and I be a closed subinterval of [a,b]. An interval point-pair (I, ξ) is said to be δ -fine if $\xi \in I \subset (\xi - \delta(\xi), \xi + \delta(\xi))$. A finite collection of interval-point pairs, $D = \{(I, \xi)\}\$, is called a δ -fine division of [a, b] if each (I, ξ) is δ -fine and $\{I\}$ is a partition of [a,b].

Now we shall introduce Kurzweil-Henstock-Young integrals.

Definition 2. [3, Definition 1.2] Let $f,g:[a,b] \to \mathbb{R}$. Then f is said to be Kurzweil-Henstock-Young integrable (or KHY-integrable) to real number A on [a,b] with respect to g if for every $\epsilon > 0$, there exists a positive function δ defined on [a,b] such that for every δ -fine division $D = \{(I,\xi)\}$ of [a,b], we have

$$|S(f,\delta,D)-A| \leq \epsilon$$
,

- where $S(f,\delta,D)=(D)\sum f(\xi)g(I)$, g(I)=g(v)-g(u) and I=[u,v]. In this paper, the value A is $\frac{1}{37}$ denoted by $\int_a^b f dg$.
- **Theorem 2** (Existence Theorem). [3, Theorem 3.5] Let $f \in BV_p$ and $g \in BV_q$, with $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$, then f is KHY-integrable with respect to g.
- The following Theorem has been proved for the Young integral in [12, p. 266], we shall prove it for 42 the \mathcal{KHY} -integral. This theorem is crucial in this paper.

Theorem 3. If $f \in BV_p$ and $g \in BV_q$, with $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$, then

$$\left| \int_{a}^{b} f dg \right| \le \|f\|_{\infty} V_{q}(g) + 3 \left\{ 1 + \zeta(\frac{1}{p} + \frac{1}{q}) \right\} V_{p}(f) V_{q}(g).$$

Proof. Let $\epsilon > 0$ be given. By Theorem 2, there exists a positive function δ such that for every δ -fine division $D = \{([u_i, v_i], \xi_i)\}\$ of [a, b],

5 Proof. Let
$$\epsilon > 0$$
 be given. By Theorem 2, there exists a positive function division $D = \{([u_i, v_i], \xi_i)\}$ of $[a, b]$,

$$\left| \int_a^b f dg - (D) \sum f(\xi_i)(g(v_i) - g(u_i)) \right| < \epsilon.$$

By Theorem 1, Corollary 1 and inequality (1), we have

$$\begin{split} \left| \int_{a}^{b} f dg \right| &\leq \left| f(a)(g(b) - g(a)) \right| + \left| \int_{a}^{b} f dg - f(a)(g(b) - g(a)) \right| \\ &\leq \left\| f \right\|_{\infty} V_{q}(g) + \left| \int_{a}^{b} f dg - (D) \sum_{i} f(\xi_{i})(g(t_{i+1}) - g(t_{i})) \right| \\ &+ \left| (D) \sum_{i} f(\xi_{i})(g(t_{i+1}) - g(t_{i})) - \sum_{i} f(t_{i+1})(g(t_{i+1}) - g(t_{i})) \right| \\ &+ \left| \sum_{i} f(t_{i+1})(g(t_{i+1}) - g(t_{i})) - f(a)(g(b) - g(a)) \right| \\ &\leq \left\| f \right\|_{\infty} V_{q}(g) + \epsilon + 2 \left\{ 1 + \zeta(\frac{1}{p} + \frac{1}{q}) \right\} V_{p}(f) V_{q}(g) + \left\{ 1 + \zeta(\frac{1}{p} + \frac{1}{q}) \right\} V_{p}(f) V_{q}(g) \end{split}$$

Since ϵ is arbitrary,

26

27 28

29

33

34

35

$$\left|\int_a^b f dg\right| \leq \|f\|_\infty V_q(g) + 3\left\{1 + \zeta(\frac{1}{p} + \frac{1}{q})\right\} V_p(f) V_q(g).$$

In this note, from now onwards, we always assume that $p, q \ge 1$.

2. Continuous linear operators in BV_p spaces

An operator $T:(BV_p,\|\cdot\|_{V_p})\to (BV_q,\|\cdot\|_{V_q})$ is said to be continuous if $\|T\varphi_n-T\varphi\|_{V_q}\to 0$ as $n\to\infty$ whenever $\|\varphi_n - \varphi\|_{V_p} \to 0$ as $n \to \infty$.

Let $T:(BV_p,\|\cdot\|_{V_p})\to (BV_q,\|\cdot\|_{V_q})$ be linear. Suppose T is continuous. Define

$$||T|| = \sup \left\{ \frac{||T\varphi||_{V_q}}{||\varphi||_{V_p}} : \varphi \in BV_p \right\}.$$

Thus ||T|| is a norm of T. Note that $||T\varphi||_{V_q} \le ||T|| ||\varphi||_{V_p}$ for all φ , if T is continuous.

Let $B(BV_p)$ be the space of all continuous operators from $(BV_p, \|\cdot\|_{V_p})$ to $(BV_p, \|\cdot\|_{V_p})$. Let $(BV_p)^*$ be the space of all continuous linear functionals defined on BV_p .

Theorem 4. $B(BV_p)$ and $(BV_p)^*$ are complete.

42 *Proof.* The proof is standard, see [10, p.221, proposition 3].

The Banach-Steinhaus theorem, the open mapping theorem, the bounded inverse theorem and the closed graph theorem hold true for linear continuous operators from the BV_p space to any Banach spaces. We shall only state the Banach-Steinhaus theorem.

Theorem 5 (Banach-Steinhaus). [10, P 232, Proposition 13 and Problem 26] For each $n \in \mathbb{N}$, let $\frac{5}{6}$ $T_n: (BV_p, \|\cdot\|_{V_p}) \to (BV_q, \|\cdot\|_{V_q})$ be linear and continuous. If for each φ in BV_p , the sequence $\{T_n\varphi\}$ converges to a value $T\varphi$, i.e., $\|T_n\varphi-T\varphi\|_{V_q} \to 0$ as $n \to \infty$, then $T: BV_p \to BV_q$ is a continuous linear operator.

We remark that the BV_q can be replaced by any Banach spaces.

Theorem 6. Let $f \in BV_p$ and $g \in BV_q$. If $q \le p$, then $fg \in BV_p$ and

$$V_p(fg) \le ||g||_{\infty} V_p(f) + ||f||_{\infty} V_p(g).$$

Proof. Let $P = \{[u,v]\}$ be a partition of [a,b]. Since $g \in BV_q$ and $q \le p$, $g \in BV_p$. By Minkowski inequality, we have

$$\frac{16}{17} \left(\sum_{P} |(fg)(v) - (fg)(u)|^{p} \right)^{1/p} = \left(\sum_{P} |f(v)g(v) - f(u)g(u)|^{p} \right)^{1/p} \\
= \left(\sum_{P} |f(v)g(v) - f(u)g(v) + f(u)g(v) - f(u)g(u)|^{p} \right)^{1/p} \\
\leq \left(\sum_{P} |f(v)g(v) - f(u)g(v)|^{p} \right)^{1/p} + \left(\sum_{P} |f(u)g(v) - f(u)g(u)|^{p} \right)^{1/p} \\
\leq \left(\sum_{P} |g||_{\infty}^{p} |f(v) - f(u)|^{p} \right)^{1/p} + \left(\sum_{P} |f(u)g(v) - g(u)|^{p} \right)^{1/p} \\
\leq \left(\sum_{P} |g||_{\infty}^{p} |f(v) - f(u)|^{p} \right)^{1/p} + \left(\sum_{P} ||f||_{\infty}^{p} |g(v) - g(u)|^{p} \right)^{1/p} \\
\leq ||g||_{\infty} V_{p}(f) + ||f||_{\infty} V_{p}(g).$$

Since the partition P is arbitrary, $V_p(fg) \le ||g||_{\infty} V_p(f) + ||f||_{\infty} V_p(g)$ and $fg \in BV_p$.

Notice that

30

31

34

12

 $\|g\|_{\infty}V_p(f) + \|f\|_{\infty}V_p(g) \leq \|g\|_{V_p}V_p(f) + \|f\|_{\infty}\|g\|_{V_p} = \|g\|_{V_p}(V_p(f) + \|f\|_{\infty}) = \|f\|_{V_p}\|g\|_{V_p}.$

Hence we have

Corollary 2. Let $f \in BV_p$ and $g \in BV_q$. If $q \le p$, then

$$V_p(fg) \le ||f||_{V_p} ||g||_{V_p}.$$

Example 1. Let $g \in BV_q$, $f_n \in BV_p$ and $\varphi \in BV_p$. By Theorem 6, $\varphi f_n \in BV_p$. Hence, by Theorem $\frac{39}{40} = 2$, $\int_a^b \varphi f_n dg$ exists if $\frac{1}{p} + \frac{1}{q} > 1$. Let $T_n : (BV_p, \|\cdot\|_{V_p}) \to \mathbb{R}$ be defined by $T_n \varphi = \int_a^b \varphi f_n dg$, where $\frac{40}{40} = \frac{1}{p} = \frac{1}$

Example 2. Let $\{f_j\}$ and $\{h_i\}$ be sequences of functions in BV_p and $g \in BV_q$ with $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$. Let $T_n : (BV_p, \|\cdot\|_{V_p}) \to (BV_p, \|\cdot\|_{V_p})$ be defined by $(T_n\varphi)(x) = \sum_{j=1}^n \int_a^b h_j(x)\varphi(t)f_j(t)dg(t) = \frac{3}{4} \sum_{j=1}^n h_j(x) \int_a^b \varphi(t)f_j(t)dg(t)$. By Theorem 6, T_n is well-defined. Then each $T_n : BV_p \to BV_p$ is a linear operator of finite rank. Hence T_n is continuous. Suppose $\{T_n\varphi\}$ is $\|\cdot\|_{V_p}$ -convergent to $T\varphi$ in $T_n : BV_p$ for each $T_n : BV_p$. Then, by the Banach-Steinhaus Theorem (Theorem 5), $T_n : BV_p : T_n : T_$

We shall discuss the compactness of T in the next section.

Operators in the BV_p space have also been discussed in [4, 5, 8].

3. Compact operators in the BV_p space

A sequence $\{\varphi_n\}$ in $(BV_p, \|\cdot\|_{V_p})$ is said to be bounded if $\{\varphi_n\}$ is bounded under $\|\cdot\|_{V_p}$. Let $C \subseteq BV_p$.

14 C is said to be compact if for any bounded sequence in C there exists a $\|\cdot\|_{V_p}$ -convergent subsequence.

An operator $T:(BV_p,\|\cdot\|_{V_p})\to (BV_p,\|\cdot\|_{V_p})$ is said to be compact if for any bounded sequence $\{\varphi_n\}$ in BV_p , there exists a subsequence $\{\varphi_{n_k}\}$ such that $\{T\varphi_{n_k}\}$ is convergent in BV_p .

Using subsequence argument, as in Banach spaces, if $T:(BV_p,\|\cdot\|_{V_p})\to (BV_p,\|\cdot\|_{V_p})$ is linear and compact, then T is continuous.

The rank of an operator is the dimension of its range. It is well-known that every finite rank continuous linear operator acting between Banach spaces is compact.

Example 3. Let $\{f_j\}$ and $\{h_i\}$ be sequences of functions in BV_p and $g \in BV_q$ with $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$. Suppose $K : (BV_p, ||\cdot||_{V_p}) \to (BV_p, ||\cdot||_{V_p})$ is defined by

$$(K\varphi)(x) = \int_{a}^{b} \left(\sum_{j=1}^{n} h_{j}(x) f_{j}(t) \right) \varphi(t) dg(t).$$

27 28 Then

26

30 31

39

$$(K\varphi)(x) = \int_a^b \left(\sum_{j=1}^n h_j(x)f_j(t)\right) \varphi(t)dg(t) = \sum_{j=1}^n h_j(x) \int_a^b \varphi f_j dg = \sum_{j=1}^n h_j(x)\alpha_j,$$

where $\alpha_j = \int_a^b \varphi f_j dg \in \mathbb{R}$. Thus K is a linear operator of finite rank. Therefore K is compact.

Here for easy reference, we shall prove that K is compact. Let $\{\varphi_k\}_{k=1}^{\infty}$ be a bounded sequence in BV_p . Hence $\{\|\varphi_k\|_{V_p}\}$ is bounded in \mathbb{R} . Then, by Theorem 3 and Corollary 2, we have

$$\begin{aligned} |\alpha_{j,k}| &= \left| \int_{a}^{b} \varphi_{k} f_{j} dg \right| \leq \|\varphi_{k} f_{j}\|_{\infty} V_{q}(g) + 3 \left\{ 1 + \zeta \left(\frac{1}{p} + \frac{1}{q} \right) \right\} V_{p}(\varphi_{k} f_{j}) V_{q}(g) \\ &\leq \|\varphi_{k}\|_{\infty} \|f_{j}\|_{\infty} V_{q}(g) + 3 \left\{ 1 + \zeta \left(\frac{1}{p} + \frac{1}{q} \right) \right\} \|f\|_{V_{p}} \|\varphi_{k}\|_{V_{p}} V_{q}(g), \end{aligned}$$

i.e., $\{\alpha_{j,k}\}_{k=1}^{\infty}$ is bounded in \mathbb{R} , for $j=1,2,\ldots,n$. By the BolzanoWeierstrass theorem, there exists a subsequence $\{\alpha_{j,k_l}\}$ of $\{\alpha_{j,k}\}_{k=1}^{\infty}$, converging in \mathbb{R} , for $j=1,2,\ldots,n$. Let $\epsilon>0$. There exists $N\in\mathbb{N}$

1 such that for any $s,t \ge N$, $|\alpha_{j,k_s} - \alpha_{j,k_t}| < \epsilon$. Thus

$$\|K\varphi_{k_{s}} - K\varphi_{k_{t}}\|_{V_{p}} = V_{p}(K\varphi_{k_{s}} - K\varphi_{k_{t}}) + \|K\varphi_{k_{s}} - K\varphi_{k_{t}}\|_{\infty}$$

$$= V_{p}\left(\sum_{j=1}^{n} h_{j}\alpha_{j,k_{s}} - \sum_{j=1}^{n} h_{j}\alpha_{j,k_{t}}\right) + \left\|\sum_{j=1}^{n} h_{j}\alpha_{j,k_{s}} - \sum_{j=1}^{n} h_{j}\alpha_{j,k_{t}}\right\|_{\infty}$$

$$\leq \sum_{j=1}^{n} |\alpha_{j,k_{s}} - \alpha_{j,k_{t}}| V_{p}(h_{j}) + \sum_{j=1}^{n} |\alpha_{j,k_{u}} - \alpha_{j,k_{v}}| \|h_{j}\|_{\infty}$$

$$\leq \epsilon \sum_{j=1}^{n} V_{p}(h_{j}) + \epsilon \sum_{j=1}^{n} \|h_{j}\|_{\infty}.$$

Hence, $\{K\varphi_{k_l}\}$ is a Cauchy sequence in BV_p under $\|\cdot\|_{V_p}$. Therefore, there exists $\psi \in BV_p$ such 13 that $||K\varphi_{k_l}-\psi||_{V_p}\to 0$ as $k_l\to\infty$. Hence K is compact. Therefore, K is $||\cdot||_{V_p}$ -continuous. We remark that we can use the same idea to prove that K is $\|\cdot\|_{V_p}$ -continuous without using the fact that compactness implies continuity.

Next we shall prove a result for a countably infinite dimensional rank.

Lemma 1. Let $\{f_j\}$ be sequence of functions in BV_p and $g \in BV_q$ with $p, q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$. Suppose $\sum_{j=1}^{\infty} \|f_j\|_{V_p} < \infty \text{ and } \{h_j\} \text{ a sequence of functions such that, for each } x \in [a,b], |\dot{h}_j(x)| \le A(x) < \infty,$ 20 for all j and $\sum_{i=1}^{\infty} h_j(x) f_j(t)$ exists for any $x, t \in [a, b]$. Then, for each $x \in [a, b]$, $\sum_{i=1}^{\infty} h_j(x) f_j(t) \in \mathbb{R}$ 21 BV_p and for each $\varphi \in BV_p$,

$$\int_a^b \left(\sum_{i=1}^\infty h_j(x)f_j(t)\right) \varphi(t)dg(t) = \sum_{i=1}^\infty h_j(x) \int_a^b f_j(t) \varphi(t)dg(t).$$

Proof. Let $m, n \in \mathbb{N}$ be fixed. For any fixed x, we have

$$V_p\left(\sum_{j=m}^n h_j(x)f_j(t)\right) \le \sum_{j=m}^n |h_j(x)|V_p\left(f_j(t)\right) \le A(x)\sum_{j=m}^n V_p(f_j).$$

Then

23 24

27 28

30

31

$$\begin{split} V_p\bigg(\sum_{j=m}^{\infty}h_j(x)f_j(t)\bigg) &= V_p\bigg(\lim_{n\to\infty}\sum_{j=m}^nh_j(x)f_j(t)\bigg) \\ &\leq A(x)\lim_{n\to\infty}\sum_{j=m}^nV(f_j) = A(x)\sum_{j=m}^{\infty}V_p(f_j) \leq A(x)\sum_{j=m}^{\infty}\|f_j\|_{V_p}. \end{split}$$

36 37 38 39 Thus $V_p\left(\sum_{j=m}^{\infty}h_j(x)f_j(t)\right)\to 0$ as $m\to\infty$. Hence, for each $x\in[a,b]$,

$$V_p\bigg(\sum_{i=1}^{\infty}h_j(x)f_j(t)\bigg)<\infty.$$

Therefore $\sum_{j=1}^{\infty} h_j(x) f_j(t) \in BV_p$, for each $x \in [a,b]$. We remark that this result, in fact, is a consequence of the completeness of BV_p .

Notice that, by Theorem 3 and Corollary 2,

Notice that, by Theorem 3 and Corollary 2,
$$\left| \int_{a}^{b} \left(\sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t) \right) \varphi(t) dg(t) \right|$$

$$\leq \left\| \sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t) \varphi(t) \right\|_{\infty} V_{q}(g) + 3 \left\{ 1 + \zeta \left(\frac{1}{p_{1}} + \frac{1}{q} \right) \right\} V_{p} \left(\sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t) \varphi(t) \right) V_{q}(g)$$

$$\leq \left\| \varphi \right\|_{\infty} \left\| \sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t) \right\|_{\infty} V_{q}(g) + 3 \left\{ 1 + \zeta \left(\frac{1}{p_{1}} + \frac{1}{q} \right) \right\} \left\| \varphi(t) \right\|_{V_{p}} \left\| \sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t) \right\|_{V_{p}} V_{q}(g).$$

$$\frac{11}{12} \text{ Hence } \left| \int_{a}^{b} \left(\sum_{j=n+1}^{\infty} h_{j}(x) g_{j}(t) \right) \varphi(t) dt \right| \to 0 \text{ as } n \to \infty. \text{ Observe that }$$

$$\frac{13}{14} \int_{a}^{b} \left(\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t) \right) \varphi(t) dg(t) - \sum_{j=1}^{n} \int_{a}^{b} h_{j}(x) f_{j}(t) \varphi(t) dg(t) = \int_{a}^{b} \left(\sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t) \right) \varphi(t) dg(t)$$
So

Hence
$$\left| \int_a^b (\sum_{j=n+1}^\infty h_j(x) g_j(t)) \varphi(t) dt \right| \to 0$$
 as $n \to \infty$. Observe that

$$\int_a^b \left(\sum_{j=1}^\infty h_j(x)f_j(t)\right) \varphi(t)dg(t) - \sum_{j=1}^n \int_a^b h_j(x)f_j(t)\varphi(t)dg(t) = \int_a^b \left(\sum_{j=n+1}^\infty h_j(x)f_j(t)\right) \varphi(t)dg(t).$$

So

18

20

$$\lim_{n\to\infty}\int_a^b \left(\sum_{j=1}^n h_j(x)f_j(t)\right)\varphi(t)dg(t) = \int_a^b \left(\sum_{j=1}^\infty h_j(x)f_j(t)\right)\varphi(t)dg(t).$$

The following lemma is proved by Abel's transformation, see [1, Ch.2, p.365], which is crucial in this paper.

Lemma 2. Let $\{a_j\}$ be a sequence in a normed spaces S with norm $\|\cdot\|_S$ and $\{b_j\}$ a real-valued sequence such that $\sum_{j=1}^{\infty} a_j$ and $\sum_{j=1}^{\infty} |b_{j+1} - b_j|$ exist. Then $\lim_{j \to \infty} b_j$, $\sum_{j=1}^{\infty} a_j b_j$ exist and, for each

$$\left\| \sum_{j=m}^{\infty} a_j b_j \right\|_{S} \le 2A \sum_{j=m}^{\infty} |b_{j+1} - b_j| + \left\| \sum_{k=m}^{\infty} a_k \right\|_{S} |b|,$$

where $A = \sup_n \|\sum_{j=1}^n a_j\|_S$ and $b = \lim_{j\to\infty} b_j$.

Lemma 3. Let $\{f_j\}$ and $\{h_j\}$ be sequences of functions in BV_p and $g \in BV_q$ with $p,q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$. Suppose that $\sum_{j=1}^{\infty} \|f_j\|_{V_p} < \infty$ and for each $x \in [a,b]$, $\sum_{j=1}^{\infty} h_j(x)$ exists.

- (i) Then, for each x, there exists $0 < A(x) < \infty$ such that $|h_j(x)| \le A(x)$ for each j and $\sum_{j=1}^{\infty} h_j(x) f_j(t)$
 - exists for any $x, t \in [a, b]$. (ii) Let $\varphi \in BV_p$ and $\alpha_j = \int_a^b f_j(t)\varphi(t)dg(t)$. Then $\sum_{i=1}^{\infty} |\alpha_{j+1} \alpha_j| < \infty$ and $\sum_{i=1}^{\infty} h_j\alpha_j \in BV_p$.
- Proof. (i) By given condition, for each x, $\sum_{j=1}^{\infty} h_j(x)$ exists. Hence there exists $0 < A(x) < \infty$ such that $|h_j(x)| \le A(x)$ for each j. Apply Lemma 2 to two real-valued sequences with $a_j = h_j(x)$ and $b_j = f_j(t)$ we have $\sum_{j=1}^{\infty} h_j(x) f_j(t)$ exists for any $x, t \in [a, b]$.

(ii) First, by Theorem 3 and Corollary 2, we have

$$\begin{split} |\alpha_{j+1} - \alpha_j| &= \left| \int_a^b (f_{j+1}(t) - f_j(t)) \varphi(t) dg(t) \right| \\ &\leq \|\varphi\|_\infty \|f_{j+1} - f_j\|_\infty V_q(g) + 3 \left\{ 1 + \zeta (\frac{1}{p_1} + \frac{1}{q}) \right\} \|f_{j+1} - f_j\|_{V_p} \|\varphi\|_{V_p} V_q(g). \end{split}$$

7 Hence $\sum_{j=1}^{\infty} |\alpha_{j+1} - \alpha_j| < \infty$.

For each $x \in [a, b]$, apply Lemma 2 to two real-valued sequences, $a_j = h_j(x)$ and $b_j = \alpha_j$, we have $\sum_{j=1}^{\infty} h_j(x)\alpha_j$ exists.

Now apply Lemma 2 to a real-valued sequence $\{\alpha_j\}$ and a sequence $\{h_j\}$ in the normed space $\frac{11}{12}$ with norm $\|\cdot\|_{V_p}$, we have $\sum_{j=1}^{\infty}h_j\alpha_j$ exists under norm $\|\cdot\|_{V_p}$. Thus $\left\{\sum_{j=1}^nh_j\alpha_j\right\}$ is Cauchy under $\|\cdot\|_{V_p}$. Therefore, there exists $\psi\in BV_p$ such that $\left\|\sum_{j=1}^nh_j\alpha_j-\psi\right\|_{V_p}\to 0$ as $n\to\infty$. Therefore $\sum_{j=1}^{\infty}h_j\alpha_j\in BV_p$.

Theorem 7. Let $\{f_j\}$ and $\{h_j\}$ be sequences of functions in BV_p such that $\sum_{j=1}^{\infty}\|f_j\|_{V_p} < \infty$, for each $x \in [a,b]$, $\sum_{j=1}^{\infty}h_j(x)$ exists and $g \in BV_q$ with $p,q \ge 1$ and $\frac{1}{p} + \frac{1}{q} > 1$. Let $K, K_n : (BV_p, \|\cdot\|_{V_p}) \to (BV_p, \|\cdot\|_{V_p})$ be linear operators defined by

$$(K_n\varphi)(x) = \int_a^b \left(\sum_{j=1}^n h_j(x)f_j(t)\right) \varphi(t)dg(t).$$

and

19

20

30 31

35

$$(K\varphi)(x) = \int_{a}^{b} \left(\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t) \right) \varphi(t) dg(t).$$

Then $||K_n - K|| \to 0$ as $n \to \infty$. Furthermore K is continuous and compact.

Proof. By Lemmas 1 and 3 (i), for each $x, t \in [a, b]$, $\sum_{j=1}^{\infty} h_j(x)g_j(t)$ exists and

$$(K\varphi)(x) = \int_a^b \left(\sum_{j=1}^\infty h_j(x)f_j(t)\right) \varphi(t)dg(t) = \sum_{j=1}^\infty h_j(x) \int_a^b \varphi f_j dg = \sum_{j=1}^\infty h_j(x)\alpha_j,$$

where $\alpha_j = \int_a^b \varphi(t) f_j(t) dg(t)$. Thus $(K - K_n) \varphi(x) = \sum_{j=n+1}^\infty h_j(x) \alpha_j$. Hence, $\|(K - K_n) \varphi\|_{V_p} = \|\sum_{j=n+1}^\infty h_j \alpha_j\|_{V_p}$. By Lemma 3 (ii),

$$||(K-K_n)(\varphi)||_{V_n} \to 0 \text{ as } n \to \infty.$$

By the Banach-Steinhaus theorem (Theorem 5), K is continuous. Now, we shall prove that $||K_n - K|| \to 0$ as $n \to \infty$. Recall that $\sum_{j=1}^{\infty} |\alpha_{j+1} - \alpha_j| < \infty$. Let $\alpha = \lim_{j \to \infty} \alpha_j$. Apply Lemma 2 to $\{a_j\}$, where $[a_j] = a_j$ with norm $||\cdot||_{V_p}$, and $b_j = \alpha_j$, use inequality (2), we have

$$\|(K - K_n)\varphi\|_{V_p} = \left\| \sum_{j=n+1}^{\infty} h_j \alpha_j \right\|_{V_p} \le 2 \sup_{j} \left\| \sum_{k=1}^{j} h_k \right\|_{V_p} \sum_{j=n+1}^{\infty} |\alpha_j - \alpha_{j+1}| + \left\| \sum_{k=n+1}^{\infty} h_k \right\|_{V_p} |\alpha|.$$

Now we shall estimate $\sum_{j=n+1}^{\infty} |\alpha_{j+1} - \alpha_j|$ and $|\alpha|$ in the above inequality. Since $\|\varphi\|_{V_p} = V_p(\varphi) + \|\varphi\|_{\infty}$, we have $\|\varphi\|_{\infty} \le \|\varphi\|_{V_p}$ and $V_p(\varphi) \le \|\varphi\|_{V_p}$. Then, by Theorem 3,

$$\begin{split} |\alpha_{j+1} - \alpha_j| &= \left| \int_a^b (f_{j+1}(t) - f_j(t)) \varphi(t) dg(t) \right| \\ &\leq \|\varphi\|_{\infty} \|f_{j+1} - f_j\|_{\infty} V_q(g) + 3 \left\{ 1 + \zeta (\frac{1}{p} + \frac{1}{q}) \right\} \|f_{j+1} - f_j\|_{V_p} \|\varphi\|_{V_p} V_q(g) \\ &\leq \|\varphi\|_{V_p} \|f_{j+1} - f_j\|_{V_p} V_q(g) + 3 \left\{ 1 + \zeta (\frac{1}{p} + \frac{1}{q}) \right\} \|f_{j+1} - f_j\|_{V_p} \|\varphi\|_{V_p} V_q(g) \\ &\leq 4 \left\{ 1 + \zeta (\frac{1}{p} + \frac{1}{q}) \right\} \|\varphi\|_{V_p} \|f_{j+1} - f_j\|_{V_p} V_q(g) \end{split}$$

Note that $\alpha = \lim_{j \to \infty} \alpha_j$ and $\alpha_j = \int_a^b \varphi(t) f_j(t) dg(t)$. By Theorem 3 and Corollary 2,

$$\begin{split} |\alpha| &= \lim_{j \to \infty} |\alpha_j| = \lim_{j \to \infty} \left| \int_a^b \varphi(t) f_j(t) dg(t) \right| \\ &\leq \|\varphi\|_{\infty} \lim_{j \to \infty} \|f_j\|_{\infty} V_q(g) + 3 \left\{ 1 + \zeta (\frac{1}{p} + \frac{1}{q}) \right\} \|\varphi\|_{V_p} \lim_{j \to \infty} \|f_j\|_{V_p} V_q(g) \\ &\leq \|\varphi\|_{\infty} \sum_{j=1}^{\infty} \|f_j\|_{\infty} V_q(g) + 3 \left\{ 1 + \zeta (\frac{1}{p} + \frac{1}{q}) \right\} \|\varphi\|_{V_p} \sum_{j=1}^{\infty} \|f_j\|_{V_p} V_q(g) \\ &\leq \|\varphi\|_{V_p} \sum_{j=1}^{\infty} \|f_j\|_{V_p} V_q(g) + 3 \left\{ 1 + \zeta (\frac{1}{p} + \frac{1}{q}) \right\} \|\varphi\|_{V_p} \sum_{j=1}^{\infty} \|f_j\|_{V_p} V_q(g) \\ &\leq 4 \left\{ 1 + \zeta (\frac{1}{p} + \frac{1}{q}) \right\} \|\varphi\|_{V_p} \sum_{j=1}^{\infty} \|f_j\|_{V_p} V_q(g). \end{split}$$

Thus

16 17

29 30

$$\begin{split} \|(K - K_n)\| &= \sup_{\varphi} \frac{\|(K - K_n)\varphi\|_{V_p}}{\|\varphi\|_{V_p}} \\ &\leq 2 \sup_{j} \left\| \sum_{k=1}^{j} h_k \right\|_{V_p} \sum_{j=n+1}^{\infty} 4\left\{1 + \zeta(\frac{1}{p} + \frac{1}{q})\right\} \|f_{j+1} - f_j\|_{V_p} V_q(g) \\ &+ \left\| \sum_{k=n+1}^{\infty} h_k \right\|_{V_p} 4\left\{1 + \zeta(\frac{1}{p} + \frac{1}{q})\right\} \sum_{j=1}^{\infty} \|f_j\|_{V_p} V_q(g). \end{split}$$

Hence $||K_n - K|| \to 0$ as $n \to \infty$. Note that each K_n is a linear operator of finite rank. Hence each K_n is compact. Thus K is compact, i.e., for any bounded sequence $\{\varphi_n\}$ in BV_p , there exists a subsequence $\{\varphi_{n_k}\}$ such that $\{K\varphi_{n_k}\}$ is convergent in BV_p under $\|\cdot\|_{V_p}$.

```
Now we shall consider nonlinear operators. Let h(t,s) be a Carathéodory function from [a,b] \times \mathbb{R} to \mathbb{R}, i.e., the function h(t,\cdot) is continuous for all t \in [a,b] and the function h(\cdot,s) is measurable for every s \in \mathbb{R}, [6, p. 349, Chapter 5]
```

Let φ be a function defined on [a,b] and $H\varphi$ a function defined on [a,b] and $(H\varphi)(t) = h(t,\varphi(t))$.

The operator H is called a Nemytskii operator. In the following, we assume that the following Lipschitz condition holds for the function h(t,s), i.e., there exists a positive numbers κ such that

$$\frac{7}{2}(3) \qquad |h(t_1, s_1) - h(t_2, s_2)| \le \kappa(|t_1 - t_2| + |s_1 - s_2|)$$

 \overline{g} for all $t_1, t_2 \in [a, b]$ and all $s_1, s_2 \in \mathbb{R}$.

Lemma 4. Let H be a Nemytskii operator defined as above and $\varphi \in BV_p$. Then

- (i) $V_p(H\varphi) \le 2\kappa(|b-a| + V_p(\varphi));$
- (ii) $||H\varphi||_{\infty} \le \kappa(|b-a|+2||\varphi||_{\infty}+|h(t_0,M_{\varphi})|)$, where $t_0 \in [a,b]$ is fixed and $h(t_0,M_{\varphi}) = \sup\{h(t_0,s): -||\varphi||_{\infty} \le s \le ||\varphi||_{\infty}\}$;
- (iii) the operator $H:(BV_p,\|\cdot\|_{V_p}) \to (BV_p,\|\cdot\|_{V_p})$ and H maps a bounded sequence in $(BV_p,\|\cdot\|_{V_p})$ to a bounded sequence in $(BV_p,\|\cdot\|_{V_p})$.

Proof. By inequality (3), we get

$$|h(t_1, \varphi(t_1)) - h(t_2, \varphi(t_2))|^p \le 2^p \kappa^p (|t_1 - t_2|^p + |\varphi(t_1) - \varphi(t_2)|^p).$$

19

27

28

30

31

34

35

$$\begin{split} V_p^P\left(h(t,\varphi(t))\right) &\leq 2^p \kappa^p \left(V_p^P(t) + V_p^P(\varphi(t))\right) \\ &\leq 2^p \kappa^p \left(V_1^P(t) + V_p^P(\varphi(t))\right) \\ &= 2^p \kappa^p \left(|b-a|^p + V_p^P(\varphi(t))\right). \end{split}$$

Thus, we have

$$\begin{split} V_p(h(t,\varphi(t))) &\leq \left(2^p \kappa^p \left(|b-a|^p + V_p^p(\varphi(t))\right)\right)^{\frac{1}{p}} \\ &\leq 2\kappa \left(\left(|b-a|^p\right)^{\frac{1}{p}} + \left(V_p^p(\varphi(t))\right)^{\frac{1}{p}}\right) \\ &= 2\kappa \left(|b-a| + V_p(\varphi(t))\right). \end{split}$$

Therefore (i) holds. Thus $(H\varphi)(t) = h(t, \varphi(t))$ is in BV_p if $\varphi \in BV_p$. Furthermore $\{V_p(H\varphi_n)\}$ is bounded if $\{V_p(\varphi_n)\}$ is bounded.

On the other hand,

$$|h(t, \varphi(t))| \le \kappa(|t - t_0| + |\varphi(t) - \varphi(t_0)|) + |h(t_0, \varphi(t_0))|$$

Suppose $\|\varphi\|_{\infty} \le \alpha$, i.e., $-\alpha \le \varphi(t) \le \alpha$ and all $t \in [a,b]$. Recall that for a fixed t_0 , $h(t_0,\cdot)$ is continuous on $[-\alpha,\alpha]$. Thus, there exists $M_{\varphi} \in [-\alpha,\alpha]$ such that $|h(t_0,\varphi(t_0))| \le |h(t_0,M_{\varphi})|$. Hence,

$$\|H\varphi\|_{\infty} \le \kappa(|b-a|+2\|\varphi\|_{\infty}) + |h(t_0, M_{\varphi})|$$

Thus (ii) holds. Therefore, $\{\|H\varphi_n\|_{\infty}\}$ is bounded if $\{\|\varphi_n\|_{\infty}\}$ is bounded. Consequently, (iii) holds.

Let $k(x,t) = \sum_{j=1}^{\infty} h_j(x) f_j(t)$ and $K: (BV_p, \|\cdot\|_{V_p}) \to (BV_p, \|\cdot\|_{V_p})$ be defined as in the Theorem

Let
$$k(x,t) = \sum_{j=1}^{\infty} h_j(x) f_j(t)$$
 and $K: (BV_p, \|\cdot\|_{V_p}) \to (BV_p, \|\cdot\|_{V_p})$ be defined as in the Theorem 7, i.e.,
$$(K\varphi)(x) = \int_a^b k(x,t) \varphi(t) dg(t) = \int_a^b \left(\sum_{j=1}^{\infty} h_j(x) f_j(t)\right) \varphi(t) dg(t).$$
 Then the composite operator KH maps $(BV_p, \|\cdot\|_{V_p})$ space to $(BV_p, \|\cdot\|_{V_p})$ space. Let $\varphi \in BV_p$, Then $(KH)(\varphi) \in BV_p$ and for each $x \in [a,b]$

$$((KH)(\varphi))(x) = (K(H\varphi))(x) = \int_a^b k(x,t)h(t,\varphi(t)) dt.$$

The composite operator *KH* is called a Hammerstein operator.

Corollary 3. The nonlinear Hammerstein operator $KH: (BV_p, \|\cdot\|_{V_p}) \to (BV_p, \|\cdot\|_{V_p})$ given above is compact.

Proof. By Lemma 4 (iii), the Nemytskii operator H maps every bounded sequence under $\|\cdot\|_{V_p}$ to a bounded sequence under $\|\cdot\|_{V_p}$. By Theorem 7, K is compact. Therefore the composite Hammerstein operator KH from $(BV_p, \|\cdot\|_{V_p})$ to $(BV_p, \|\cdot\|_{V_p})$ is compact.

4. Integral equations

The Fredholm-Stieltjes integral equation of the second kind is an equation of the form

$$\varphi(x) = \psi(x) + \lambda \int_{a}^{b} k(x,t)\varphi(t)dg(t),$$

where $\psi:[a,b]\to\mathbb{R}$ and $k:[a,b]\times[a,b]\to\mathbb{R}$. The function k is known as the integral kernel.

In this section, let $\psi, \varphi \in BV_p$, we first discuss the case when the integral kernel is separable, i.e., k(x,t) = h(x)f(t). By the standard method we can show that the integral equation (5) has a unique solution. We shall write it down for easy reference. Suppose that $h, f \in BV_p$ and $g \in BV_q$.

The equation (5) becomes

$$\frac{31}{32} (6) \qquad \varphi(x) = \psi(x) + \lambda \int_{a}^{b} h(x)f(t)\varphi(t)dg(t) \\
= \psi(x) + \lambda h(x)\alpha,$$

where $\alpha = \int_a^b f(t)\varphi(t)dg(t)$. Multiply f(x) the both side of the above equality, then integrate with respect to g(x), we get

$$\int_a^b \varphi(x) f(x) dg(x) = \int_a^b \psi(x) f(x) dg(x) + \lambda \alpha \int_a^b h(x) f(x) dg(x),$$

40 i.e.,

19

30

31

37

38

$$\alpha = \int_{a}^{b} \psi(x) f(x) dg(x) + \lambda \alpha \int_{a}^{b} h(x) f(x) dg(x).$$

1 Note that by Theorems 3 and 6, $\int_a^b \psi(x) f(x) dg(x)$ and $\int_a^b h(x) f(x) dg(x)$ exist. If $\lambda \int_a^b h(x) f(x) dg(x) \neq 0$

Note that by Theorems 3 and 6,
$$\int_{a} \psi(x) f(x) dg(x)$$
 and $\int_{a} h(x) f(x) dg(x)$ and $\int_{a} h(x) f(x) dx$ and $\int_{a} h(x) f(x) dx$ and $\int_{a} h(x) f(x) dx$ and \int_{a}

Hence, from Equation (6),

$$\varphi(x) = \psi(x) + \lambda h(x)\alpha = \psi(x) + \lambda h(x) \frac{\int_a^b \psi(t) f(t) dg(t)}{1 - \lambda \int_a^b h(t) f(t) dg(t)}.$$

is the unique solution of a Fredholm-Stieltjes integral equation with separable integral kernel whenever $\lambda \int_a^b h(t) f(t) dg(t) \neq 1.$

For the case when $\lambda \int_a^b h(t) f(t) dg(t) = 1$, the equation has no solution, if $\int_a^b \psi(t) f(t) dg(t) \neq 0$. Let $h_j, f_j \in BV_p$, $g \in BV_q$, for j = 1, 2, ..., n, and

$$k(x,t) = \sum_{j=1}^{n} h_j(x) f_j(t)$$

for $x, t \in [a, b]$. Then the corresponding Fredholm integral equation has properties analogous to the above case.

Linear Fredholm equations and the Kurzweil-Henstock integral have been addressed in [5].

Let us now return to the case in which the kernel $k(x,t) = \sum_{j=1}^{\infty} h_j(x) f_j(t)$ and the operator K are the same as in Theorem 7. Let $\psi \in BV_p$ and $T\varphi = \psi + \lambda K\varphi$ for $\varphi \in BV_p$. Let $||K|| = \sup \frac{||K\varphi||_{V_p}}{||\varphi||_{V_p}}$, where supremum is over all $\varphi \in BV_p$.

Theorem 8. Suppose there exists $\mu > 0$ such that $\|K\varphi\|_{V_p} \le \mu \|\varphi\|_{V_p}$ for each φ , i.e., $\|K\| \le \mu$. For any λ with $0 < \lambda < \frac{1}{\mu}$, there exists a unique fixed point $\phi \in BV_p$, i.e.,

$$\phi(x) = \psi(x) + \lambda(K\phi)(x) = \psi(x) + \lambda \int_{a}^{b} k(x,t)\phi(t)dg(t).$$

This solution ϕ is given by a convergent Neumann series $\phi(x) = \sum_{i=1}^{\infty} \lambda^i K^i \psi$ and $\|\phi\|_{V_p} \leq \frac{1}{1-\lambda \mu} \|\psi\|_{V_p}$, where $K^1 = K$ and $K^i \psi = K(K^{i-1} \psi)$, i = 2, 3, 4, ...

Proof. The proof is standard. Let $\phi_0(x) = \psi(x)$, $\phi_n(x) = \psi + \lambda K \phi_{n-1}(x)$, $n = 1, 2, \ldots$ Then $\phi_{n+1}(x) = \psi(x)$ $\sum_{i=0}^{n+1} \lambda^i K^i \phi(x), n = 1, 2, \dots \text{ Since } ||K|| \le \mu, \text{ we have}$

$$\|K^i\psi\|_{V_p} = \|KK^{i-1}\psi\|_{V_p} \leq \mu \|K^{i-1}\psi\|_{V_p} \leq \mu^i \|\psi\|_{V_p}.$$

Thus, for any $m, n \in \mathbb{N}$, we have

28

$$\|\phi_n - \phi_m\|_{V_p} = \left\| \sum_{i=m+1}^n \lambda^i K^i \psi \right\|_{V_p} \le \sum_{i=m+1}^n \lambda^i \|K^i \psi\|_{V_p} = \left(\sum_{i=m+1}^n (\lambda \mu)^i \right) \|\psi\|_{V_p}.$$

Since $0 < \lambda \mu < 1$ by our assumptions, the sequence $\{\phi_n\}$ is Cauchy under $\|\cdot\|_{V_p}$. Hence $\lim_{n\to\infty}\phi_n = 1$ $\sum_{i=0}^{\infty} \lambda^i K^i \psi$ exists in BV_p , if $0 < \lambda < \frac{1}{\mu}$.

Let $\phi(x) = \sum_{i=0}^{\infty} \mu^i(K^i\psi)(x)$. Then $\phi(x) = \lim_{n \to \infty} \phi_n(x)$. By Theorem 7, K is $\|\cdot\|_{V_p}$ -continuous.

From the iteration equation, $\phi_n(x) = \psi + \lambda K \phi_{n-1}(x)$ and the continuity of K, we have

$$\lim_{n \to \infty} \phi_n(x) = \psi + \lambda \lim_{n \to \infty} K \phi_{n-1}(x)$$

$$= \psi + \lambda \lim_{n \to \infty} \int_a^b k(x, t) \phi_{n-1}(t) dg(t)$$

$$= \psi + \lambda \int_a^b k(x, t) \left(\lim_{n \to \infty} \phi_{n-1}(t)\right) dg(t)$$

$$= \psi + \lambda \int_a^b k(x, t) \phi(t) dg(t).$$

Thus, if $0 < \lambda < \frac{1}{\mu}$, we can find $\phi \in BV_p$ such that $\phi(x) = \psi + \lambda \int_a^b k(x,t)\phi(t)dg(t)$.

Now we shall prove that the fixed point ϕ is unique. Suppose that there are two fixed points, namely ϕ and Φ . Then $\phi = \psi + \lambda K \phi$ and $\Phi = \psi + \lambda K \Phi$. Therefore $\phi - \Phi = \lambda K (\phi - \Phi)$ and

$$\|\phi - \Phi\|_{V_p} = \lambda \|K(\phi - \Phi)\|_{V_p} \le \lambda \|K\| \|(\phi - \Phi)\|_{V_p} \le \lambda \mu \|(\phi - \Phi)\|_{V_p}.$$

Hence $(1 - \lambda \mu) \|\phi - \Phi\|_{V_p} \le 0$. Recall that $1 - \lambda \mu > 0$. It imply that $\|\phi - \Phi\|_{V_p} = 0$. Thus $\|\phi - \Phi\|_{V_p} = 0$. Consequently $\phi = \Phi$. Therefore the fixed point ϕ is unique.

Remark 1. We note that although μ is difficult to locate. However, according to Theorem 8, if λ is a sufficiently small positive number, then a unique fixed point exists.

Theorem 9 (Tychonoff's theorem). [9, Theorem A] Let C be a convex subset of a locally convex topological vector space. If T is a continuous operator which maps C into a compact subset of C, then T has a fixed point in C.

Theorem 10. Let $T\varphi = \psi + \lambda(KH)\varphi$, where KH is given before Corollary 3. Assume that $\psi \in BV_p$, $\frac{3\kappa |b-a|+|h(t_0,M_{2\psi})|}{\|\psi\|_{V_p}} \leq \beta$ and $\|K\| \leq \mu$, $0 < \lambda < \frac{1}{\mu(\beta+4\kappa)}$. Then $T: (BV_p,\|\cdot\|_{V_p}) \to (BV_p,\|\cdot\|_{V_p})$ has a fixed point.

Proof. By Lemma 4 (i) and (ii), we have

17

37 38

$$\|H\varphi\|_{V_p} = V_p(H\varphi) + \|H\varphi\|_{\infty} \le 3\kappa |b-a| + 2\kappa \|\varphi\|_{V_p} + |h(t_0,M_\varphi)|.$$

Since *K* is continuous, we have

$$||KH\varphi||_{V_p} \le ||K|| ||H\varphi||_{V_p} \le ||K|| \left(3\kappa |b-a| + 2\kappa ||\varphi||_{V_p} + |h(t_0, M_{\varphi})| \right).$$

Let $C = \{ \varphi \in BV_p : \|\varphi\|_{V_p} \le 2\|\psi\|_{V_p} \}$. Then C is convex and bounded. For every $\varphi \in C$, we have

$$\begin{split} \|T\varphi\|_{V_{p}} &\leq \lambda \|(KH)\varphi\|_{V_{p}} + \|\psi\|_{V_{p}} \\ &\leq \lambda \|K\| \left(3\kappa |b-a| + 2\kappa \|\varphi\|_{V_{p}} + |h(t_{0}, M_{\varphi})| \right) + \|\psi\|_{V_{p}} \\ &\leq \lambda \mu \left(3\kappa |b-a| + 4\kappa \|\psi\|_{V_{p}} + |h(t_{0}, M_{2\psi})| \right) + \|\psi\|_{V_{p}} \\ &= \lambda \mu \|\psi\|_{V_{p}} \left(\frac{3\kappa |b-a| + |h(t_{0}, M_{2\psi})|}{\|\psi\|_{V_{p}}} + 4\kappa \right) + \|\psi\|_{V_{p}} \\ &< \frac{1}{\mu(\beta + 4\kappa)} \mu \|\psi\|_{V_{p}} (\beta + 4\kappa) + \|\psi\|_{V_{p}} \\ &= 2\|\psi\|_{V_{p}}. \end{split}$$

Then $TC \subseteq C$. T is compact since KH is compact. Thus TC is compact. Hence, by Tychonoff's theorem, T has a fixed point in C.

Remark 2. We note that although $\frac{1}{\mu(\beta+4\kappa)}$ is difficult to locate. However, according to Theorem 10, if λ is a sufficiently small positive number, $T:(BV_p,\|\cdot\|_{V_p})\to (BV_p,\|\cdot\|_{V_p})$ has a fixed point.

Acknowledgement

We would like to thank Professor Lee Peng Yee for his constructive comments on this paper.

References

- [1] T. M. Apostol: Mathematical Analysis, Addison Wesley, Reading, 1957.
- [2] K. K. Aye and P. Y. Lee: The dual of the space of functions of bounded variation, Math. Bohem. 131(1) (2006), 1-9.
- [3] V. Boonpogkrong and T. S. Chew: On integral with integrators in BV_p , Real Anal. Exch. 30(1) (2004), 193–200.
- [4] D. Bugajewski, J. Gulgowski and P. Kasprzak: On continuity and compactness of some nonlinear operators in the spaces of functions of bounded variation, Ann. di Mat. Pura ed Appl. 195 (2016), 1513–1530.
- [5] *M. Federson and R. Bianconi*: Linear Fredholm integral equations and the integral of Kurzweil, J. Appl. Anal. **8(1)** (2002), 83–110.
- [6] M. A. Krasnosel'skii: Integral Operators in Spaces of Summable Functions. English Edition, Noordhoff International, 1976
- [7] E. R. Love and L. C. Young: On fractional integration by parts, Proc. London Math. Soc., Ser. 2, 44 (1938), 1–35.
- [8] G. A. Monteiro, A. Slavík and M. Tvrdý: Kurzweil-Stieltjes Integral Theory and Applications. Ser. Real Anal. Vol. 15, World Scientific, 2018.
- [9] S. A. Morrisf and E. S. Noussair: The Schauder-Tychonoff fixed point theorem and applications. Matematický časopis **25(2)** (1975), 165–172.
- [10] H. L. Royden: Real Analysis, Third edition, Macmillan, 1989.
- [11] S. Schwabik and G. Ye: Topics in Banach Space Integration. Ser. Real Anal. Vol. 10, World Scientific, 2005.
- [12] L. C. Young: An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251–282.

22

26

27 28

29

30

31

32

33

34

35 36

39

- Department of Mathematics, Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110 Thailand

 Email address: varayu.b@psu.ac.th and b.varayu@gmail.com

 Department of Mathematics, Faculty of Science, National University of Singapore, Singapore

 Email address: tschew@nus.edu.sg
- 12 13 14 15 __ 17