```
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS
Vol., No., YEAR
https://doi.org/jie.YEAR..PAGE
```


# COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE $B V_{p}$ SPACE 

VARAYU BOONPOGKRONG AND TUAN SENG CHEW

> Abstract. In this paper, compact operators and integral equations in terms of integral kernel in the $B V_{p}$ space will be considered. The $B V_{p}$ space is the space of all bounded $p$-variation on a compact interval. The integral used in this paper is of Stieltjes-type. The integral is an integration with respect to a function of bounded $p$-variation. A fractional Brownian motion in the stochastic integral is a processes of bounded $p$-variation.

In this paper, let $B V_{p}$ be the space of all bounded $p$-variation defined on a compact interval $[a, b]$. We shall consider compact operators $K: B V_{p} \rightarrow B V_{p}$ where $K$ are defined by

$$
(K \varphi)(x)=\int_{a}^{b} k(x, t) \varphi(t) d g(t) .
$$

Integral equations considered are of the form

$$
\varphi=\psi+\lambda K \varphi .
$$

The integral $\int_{a}^{b} f(t) d g(t)$ used here is the Kurzweil-Henstock-Young integral, which is a Stieltjes-type integral. When $f \in B V_{p}$ and $g \in B V_{q}$, where $\frac{1}{p}+\frac{1}{q}>1$ and $p, q \geq 1$, then the integral $\int_{a}^{b} f(t) d g(t)$ exists, see $[3,7,12]$. The kurzweil-Henstock approach is used to handle the integral, for the KurzweilHenstock approach, see [8, 11].

## 1. Preliminaries

In this section, we shall present some results proved by L.C.Young in 1936, see [7, 12].
Definition 1. Let $f:[a, b] \rightarrow \mathbb{R}$ and let $0<p<\infty$. Given a partition $P=\left\{\left[u_{i}, v_{i}\right]\right\}_{i=1}^{n}$ of $[a, b]$, let

$$
V_{p}(f, P ;[a, b])=\left(\sum_{i=1}^{n}\left|f\left(v_{i}\right)-f\left(u_{i}\right)\right|^{p}\right)^{1 / p}
$$

The $p$-variation of $f$ is defined by

$$
V_{p}(f ;[a, b])=\sup _{P} V_{p}(f, P ;[a, b])
$$

We say that $f$ is of bounded $p$-variation on $[a, b]$ or $f \in B V_{p}[a, b]$, if $V_{p}(f ;[a, b])<\infty$. In this paper, we always denote $B V_{p}[a, b]$ and $V_{p}(f ;[a, b])$ by $B V_{p}$ and $V_{p}(f)$, respectively.
...
...
2020 Mathematics Subject Classification. 26A39, 26A42, 45B05.
Key words and phrases. Compact operators, Integral equations, Bounded p-variation, Kurzweil-Henstock integral, Young-Stieltjes integral.

From Jensen's inequality, we have

$$
\left(\sum\left|f\left(v_{i}\right)-f\left(u_{i}\right)\right|^{q}\right)^{1 / q} \leq\left(\sum\left|f\left(v_{i}\right)-f\left(u_{i}\right)\right|^{p}\right)^{1 / p}
$$

whenever $0<p<q$. If $f \in B V_{p}$ and $0<p<q$, then $V_{q}(f ;[a, b]) \leq V_{p}(f ;[a, b])<\infty$, i.e., $f \in B V_{q}$. Hence, we have $B V_{p} \subseteq B V_{q}$.

If $f \in B V_{p}$, then $f$ is bounded. Thus $\|f\|_{\infty}$ exists. Let $\|f\|_{V_{p}}=V_{p}(f)+\|f\|_{\infty}$. It is well-known that $\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ is a Banach space, if $p \geq 1$.
Theorem 1. [3, Theorem 2.2; 12, p. 256, (6.2)]Let $f \in B V_{p}$ and $g \in B V_{q}$, with $p, q>0$ and $\frac{1}{p}+\frac{1}{q}>1$. Then, for any partition $P=\left\{\left[t_{i}, t_{i+1}\right]\right\}_{i=1}^{n}$ of $[a, b]$ and $\xi=t_{i}$ for some $i=1,2, \ldots, n+1$,

$$
\left|\sum_{i=1}^{n} f\left(t_{i+1}\right)\left(g\left(t_{i+1}\right)-g\left(t_{i}\right)\right)-f(\xi)(g(b)-g(a))\right| \leq\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\} V_{p}(f) V_{q}(g)
$$

where $\zeta\left(\frac{1}{p}+\frac{1}{q}\right)=\sum_{n=1}^{\infty} n^{-\left(\frac{1}{p}+\frac{1}{q}\right)}$.
Corollary 1. [3, Corollary 2.3; 12, p.257, (6.4)]Let $f \in B V_{p}$ and $g \in B V_{q}$, with $p, q>0$ and $\frac{1}{p}+\frac{1}{q}>1$. Then, for any two partitions, $D=\left\{\left[t_{i}, t_{i+1}\right]\right\}_{i=1}^{n}$ and $D^{\prime}=\left\{\left[s_{j}, s_{j+1}\right]\right\}_{j=1}^{m}$ of $[a, b]$, with any $\xi_{i} \in\left[t_{i}, t_{i+1}\right], \eta_{j} \in\left[s_{j}, s_{j+1}\right]$, we have
$\left|(D) \sum f\left(\xi_{i}\right)\left(g\left(t_{i+1}\right)-g\left(t_{i}\right)\right)-\left(D^{\prime}\right) \sum f\left(\eta_{j}\right)\left(g\left(s_{j+1}\right)-g\left(s_{j}\right)\right)\right| \leq 2\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\} V_{p}(f) V_{q}(g)$ where $\zeta\left(\frac{1}{p}+\frac{1}{q}\right)=\sum_{n=1}^{\infty} n^{-\left(\frac{1}{p}+\frac{1}{q}\right)}$

A finite collection $P=\{I\}$ of nonoverlapping closed subintervals of $[a, b]$ is said to be a partition of $[a, b]$ if $\cup_{I \in P} I=[a, b]$. Let $\delta$ be a positive function on $[a, b]$ and I be a closed subinterval of $[a, b]$. An interval point-pair $(I, \xi)$ is said to be $\delta$-fine if $\xi \in I \subset(\xi-\delta(\xi), \xi+\delta(\xi))$. A finite collection of interval-point pairs, $D=\{(I, \xi)\}$, is called a $\delta$-fine division of $[a, b]$ if each $(I, \xi)$ is $\delta$-fine and $\{I\}$ is a partition of $[a, b]$.

Now we shall introduce Kurzweil-Henstock-Young integrals.
Definition 2. [3, Definition 1.2] Let $f, g:[a, b] \rightarrow \mathbb{R}$. Then $f$ is said to be Kurzweil-Henstock-Young integrable (or $\mathcal{K H} \mathcal{Y}$-integrable) to real number $A$ on $[a, b]$ with respect to $g$ if for every $\epsilon>0$, there exists a positive function $\delta$ defined on $[a, b]$ such that for every $\delta$-fine division $D=\{(I, \xi)\}$ of $[a, b]$, we have

$$
|S(f, \delta, D)-A| \leq \epsilon
$$

where $S(f, \delta, D)=(D) \sum f(\xi) g(I), g(I)=g(v)-g(u)$ and $I=[u, v]$. In this paper, the value $A$ is denoted by $\int_{a}^{b} f d g$.
Theorem 2 (Existence Theorem). [3, Theorem 3.5] Let $f \in B V_{p}$ and $g \in B V_{q}$, with $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}>1$, then $f$ is $\mathcal{K} \mathcal{H} \mathcal{Y}$-integrable with respect to $g$.

The following Theorem has been proved for the Young integral in [12, p. 266], we shall prove it for the $\mathcal{K} \mathcal{H} \mathcal{Y}$-integral. This theorem is crucial in this paper.

Theorem 3. If $f \in B V_{p}$ and $g \in B V_{q}$, with $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}>1$, then

$$
\left|\int_{a}^{b} f d g\right| \leq\|f\|_{\infty} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\} V_{p}(f) V_{q}(g)
$$

Proof. Let $\epsilon>0$ be given. By Theorem 2, there exists a positive function $\delta$ such that for every $\delta$-fine division $D=\left\{\left(\left[u_{i}, v_{i}\right], \xi_{i}\right)\right\}$ of $[a, b]$,

$$
\begin{equation*}
\left|\int_{a}^{b} f d g-(D) \sum f\left(\xi_{i}\right)\left(g\left(v_{i}\right)-g\left(u_{i}\right)\right)\right|<\epsilon \tag{1}
\end{equation*}
$$

By Theorem 1, Corollary 1 and inequality (1), we have

$$
\begin{aligned}
\left|\int_{a}^{b} f d g\right| \leq & |f(a)(g(b)-g(a))|+\left|\int_{a}^{b} f d g-f(a)(g(b)-g(a))\right| \\
\leq & \|f\|_{\infty} V_{q}(g)+\left|\int_{a}^{b} f d g-(D) \sum f\left(\xi_{i}\right)\left(g\left(t_{i+1}\right)-g\left(t_{i}\right)\right)\right| \\
& +\left|(D) \sum f\left(\xi_{i}\right)\left(g\left(t_{i+1}\right)-g\left(t_{i}\right)\right)-\sum f\left(t_{i+1}\right)\left(g\left(t_{i+1}\right)-g\left(t_{i}\right)\right)\right| \\
& +\left|\sum f\left(t_{i+1}\right)\left(g\left(t_{i+1}\right)-g\left(t_{i}\right)\right)-f(a)(g(b)-g(a))\right| \\
\leq & \|f\|_{\infty} V_{q}(g)+\epsilon+2\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\} V_{p}(f) V_{q}(g)+\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\} V_{p}(f) V_{q}(g)
\end{aligned}
$$

Since $\epsilon$ is arbitrary,

$$
\left|\int_{a}^{b} f d g\right| \leq\|f\|_{\infty} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\} V_{p}(f) V_{q}(g)
$$

In this note, from now onwards, we always assume that $p, q \geq 1$.

## 2. Continuous linear operators in $\boldsymbol{B} \boldsymbol{V}_{\boldsymbol{p}}$ spaces

An operator $T:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{q},\|\cdot\|_{V_{q}}\right)$ is said to be continuous if $\left\|T \varphi_{n}-T \varphi\right\|_{V_{q}} \rightarrow 0$ as $n \rightarrow \infty$ whenever $\left\|\varphi_{n}-\varphi\right\|_{V_{p}} \rightarrow 0$ as $n \rightarrow \infty$.

Let $T:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{q},\|\cdot\|_{V_{q}}\right)$ be linear. Suppose $T$ is continuous. Define

$$
\|T\|=\sup \left\{\frac{\|T \varphi\|_{V_{q}}}{\|\varphi\|_{V_{p}}}: \varphi \in B V_{p}\right\} .
$$

Thus $\|T\|$ is a norm of $T$. Note that $\|T \varphi\|_{V_{q}} \leq\|T\|\|\varphi\|_{V_{p}}$ for all $\varphi$, if $T$ is continuous.
Let $B\left(B V_{p}\right)$ be the space of all continuous operators from $\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ to $\left(B V_{p},\|\cdot\|_{V_{p}}\right)$. Let $\left(B V_{p}\right)^{\star}$ be the space of all continuous linear functionals defined on $B V_{p}$.
Theorem 4. $B\left(B V_{p}\right)$ and $\left(B V_{p}\right)^{\star}$ are complete.
Proof. The proof is standard, see [10, p.221, proposition 3].

The Banach-Steinhaus theorem, the open mapping theorem, the bounded inverse theorem and the closed graph theorem hold true for linear continuous operators from the $B V_{p}$ space to any Banach spaces. We shall only state the Banach-Steinhaus theorem.
Theorem 5 (Banach-Steinhaus). [10, P 232, Proposition 13 and Problem 26] For each $n \in \mathbb{N}$, let $T_{n}:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{q},\|\cdot\|_{V_{q}}\right)$ be linear and continuous. If for each $\varphi$ in $B V_{p}$, the sequence $\left\{T_{n} \varphi\right\}$ converges to a value $T \varphi$, i.e., $\left\|T_{n} \varphi-T \varphi\right\|_{V_{q}} \rightarrow 0$ as $n \rightarrow \infty$, then $T: B V_{p} \rightarrow B V_{q}$ is a continuous linear operator.

We remark that the $B V_{q}$ can be replaced by any Banach spaces.
Theorem 6. Let $f \in B V_{p}$ and $g \in B V_{q}$. If $q \leq p$, then $f g \in B V_{p}$ and

$$
V_{p}(f g) \leq\|g\|_{\infty} V_{p}(f)+\|f\|_{\infty} V_{p}(g)
$$

Proof. Let $P=\{[u, v]\}$ be a partition of $[a, b]$. Since $g \in B V_{q}$ and $q \leq p, g \in B V_{p}$. By Minkowski inequality, we have

$$
\begin{aligned}
\left(\sum_{P}|(f g)(v)-(f g)(u)|^{p}\right)^{1 / p} & =\left(\sum_{P}|f(v) g(v)-f(u) g(u)|^{p}\right)^{1 / p} \\
& =\left(\sum_{P}|f(v) g(v)-f(u) g(v)+f(u) g(v)-f(u) g(u)|^{p}\right)^{1 / p} \\
& \leq\left(\sum_{P}|f(v) g(v)-f(u) g(v)|^{p}\right)^{1 / p}+\left(\sum_{P}|f(u) g(v)-f(u) g(u)|^{p}\right)^{1 / p} \\
& \leq\left(\sum_{P}\|g\|_{\infty}^{p}|f(v)-f(u)|^{p}\right)^{1 / p}+\left(\sum_{P}\|f\|_{\infty}^{p}|g(v)-g(u)|^{p}\right)^{1 / p} \\
& \leq\|g\|_{\infty} V_{p}(f)+\|f\|_{\infty} V_{p}(g) .
\end{aligned}
$$

Since the partition $P$ is arbitrary, $V_{p}(f g) \leq\|g\|_{\infty} V_{p}(f)+\|f\|_{\infty} V_{p}(g)$ and $f g \in B V_{p}$.
Notice that

$$
\|g\|_{\infty} V_{p}(f)+\|f\|_{\infty} V_{p}(g) \leq\|g\|_{V_{p}} V_{p}(f)+\|f\|_{\infty}\|g\|_{V_{p}}=\|g\|_{V_{p}}\left(V_{p}(f)+\|f\|_{\infty}\right)=\|f\|_{V_{p}}\|g\|_{V_{p}} .
$$

Hence we have
Corollary 2. Let $f \in B V_{p}$ and $g \in B V_{q}$. If $q \leq p$, then

$$
V_{p}(f g) \leq\|f\|_{V_{p}}\|g\|_{V_{p}}
$$

Example 1. Let $g \in B V_{q}, f_{n} \in B V_{p}$ and $\varphi \in B V_{p}$. By Theorem 6, $\varphi f_{n} \in B V_{p}$. Hence, by Theorem 2, $\int_{a}^{b} \varphi f_{n} d g$ exists if $\frac{1}{p}+\frac{1}{q}>1$. Let $T_{n}:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow \mathbb{R}$ be defined by $T_{n} \varphi=\int_{a}^{b} \varphi f_{n} d g$, where $f_{n} \in B V_{p}$ with $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}>1$. Then $T_{n}$ is continuous. Suppose $\lim _{n \rightarrow \infty} \int_{a}^{b} \varphi f_{n} d g$ exists. Then, by Theorem 5, $T:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow \mathbb{R}$ defined by $T \varphi=\lim _{n \rightarrow \infty} \int_{a}^{b} \varphi f_{n} d g$ is continuous.

Example 2. Let $\left\{f_{j}\right\}$ and $\left\{h_{i}\right\}$ be sequences offunctions in $B V_{p}$ and $g \in B V_{q}$ with $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}>1$. Let $T_{n}:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ be defined by $\left(T_{n} \varphi\right)(x)=\sum_{j=1}^{n} \int_{a}^{b} h_{j}(x) \varphi(t) f_{j}(t) d g(t)=$ $\sum_{j=1}^{n} h_{j}(x) \int_{a}^{b} \varphi(t) f_{j}(t) d g(t)$. By Theorem 6, $T_{n}$ is well-defined. Then each $T_{n}: B V_{p} \rightarrow B V_{p}$ is a linear operator of finite rank. Hence $T_{n}$ is continuous. Suppose $\left\{T_{n} \varphi\right\}$ is $\|\cdot\|_{V_{p}}$-convergent to $T \varphi$ in $B V_{p}$ for each $\varphi \in B V_{p}$. Then, by the Banach-Steinhaus Theorem (Theorem 5), $T:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow$ $\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ is continuous.

We shall discuss the compactness of $T$ in the next section.
Operators in the $B V_{p}$ space have also been discussed in $[4,5,8]$.

## 3. Compact operators in the $\boldsymbol{B} \boldsymbol{V}_{\boldsymbol{p}}$ space

A sequence $\left\{\varphi_{n}\right\}$ in ( $B V_{p},\|\cdot\|_{V_{p}}$ ) is said to be bounded if $\left\{\varphi_{n}\right\}$ is bounded under $\|\cdot\|_{V_{p}}$. Let $C \subseteq B V_{p}$. $C$ is said to be compact if for any bounded sequence in $C$ there exists a $\|\cdot\|_{V_{p}}$-convergent subsequence.

An operator $T:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ is said to be compact if for any bounded sequence $\left\{\varphi_{n}\right\}$ in $B V_{p}$, there exists a subsequence $\left\{\varphi_{n_{k}}\right\}$ such that $\left\{T \varphi_{n_{k}}\right\}$ is convergent in $B V_{p}$.

Using subsequence argument, as in Banach spaces, if $T:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ is linear and compact, then $T$ is continuous.

The rank of an operator is the dimension of its range. It is well-known that every finite rank continuous linear operator acting between Banach spaces is compact.

Example 3. Let $\left\{f_{j}\right\}$ and $\left\{h_{i}\right\}$ be sequences of functions in $B V_{p}$ and $g \in B V_{q}$ with $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}>1$. Suppose $K:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ is defined by

$$
(K \varphi)(x)=\int_{a}^{b}\left(\sum_{j=1}^{n} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t) .
$$

Then

$$
(K \varphi)(x)=\int_{a}^{b}\left(\sum_{j=1}^{n} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t)=\sum_{j=1}^{n} h_{j}(x) \int_{a}^{b} \varphi f_{j} d g=\sum_{j=1}^{n} h_{j}(x) \alpha_{j},
$$

where $\alpha_{j}=\int_{a}^{b} \varphi f_{j} d g \in \mathbb{R}$. Thus $K$ is a linear operator of finite rank. Therefore $K$ is compact.
Here for easy reference, we shall prove that $K$ is compact. Let $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ be a bounded sequence in $B V_{p}$. Hence $\left\{\left\|\varphi_{k}\right\|_{V_{p}}\right\}$ is bounded in $\mathbb{R}$. Then, by Theorem 3 and Corollary 2, we have

$$
\begin{aligned}
\left|\alpha_{j, k}\right|=\left|\int_{a}^{b} \varphi_{k} f_{j} d g\right| & \leq\left\|\varphi_{k} f_{j}\right\|_{\infty} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\} V_{p}\left(\varphi_{k} f_{j}\right) V_{q}(g) \\
& \leq\left\|\varphi_{k}\right\|_{\infty}\left\|f_{j}\right\|_{\infty} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\}\|f\|_{V_{p}}\left\|\varphi_{k}\right\|_{V_{p}} V_{q}(g)
\end{aligned}
$$

i.e., $\left\{\alpha_{j, k}\right\}_{k=1}^{\infty}$ is bounded in $\mathbb{R}$, for $j=1,2, \ldots, n$. By the BolzanoWeierstrass theorem, there exists a subsequence $\left\{\alpha_{j, k_{l}}\right\}$ of $\left\{\alpha_{j, k}\right\}_{k=1}^{\infty}$, converging in $\mathbb{R}$, for $j=1,2, \ldots, n$. Let $\epsilon>0$. There exists $N \in \mathbb{N}$
such that for any $s, t \geq N,\left|\alpha_{j, k_{s}}-\alpha_{j, k_{t}}\right|<\epsilon$. Thus

$$
\begin{aligned}
\left\|K \varphi_{k_{s}}-K \varphi_{k_{t}}\right\|_{V_{p}} & =V_{p}\left(K \varphi_{k_{s}}-K \varphi_{k_{t}}\right)+\left\|K \varphi_{k_{s}}-K \varphi_{k_{t}}\right\|_{\infty} \\
& =V_{p}\left(\sum_{j=1}^{n} h_{j} \alpha_{j, k_{s}}-\sum_{j=1}^{n} h_{j} \alpha_{j, k_{t}}\right)+\left\|\sum_{j=1}^{n} h_{j} \alpha_{j, k_{s}}-\sum_{j=1}^{n} h_{j} \alpha_{j, k_{t}}\right\|_{\infty} \\
& \leq \sum_{j=1}^{n}\left|\alpha_{j, k_{s}}-\alpha_{j, k_{t}}\right| V_{p}\left(h_{j}\right)+\sum_{j=1}^{n}\left|\alpha_{j, k_{u}}-\alpha_{j, k_{v}}\right|\left\|h_{j}\right\|_{\infty} \\
& <\epsilon \sum_{j=1}^{n} V_{p}\left(h_{j}\right)+\epsilon \sum_{j=1}^{n}\left\|h_{j}\right\|_{\infty} .
\end{aligned}
$$

Hence, $\left\{K \varphi_{k_{l}}\right\}$ is a Cauchy sequence in $B V_{p}$ under $\|\cdot\|_{V_{p}}$. Therefore, there exists $\psi \in B V_{p}$ such that $\left\|K \varphi_{k_{l}}-\psi\right\|_{V_{p}} \rightarrow 0$ as $k_{l} \rightarrow \infty$. Hence $K$ is compact. Therefore, $K$ is $\|\cdot\|_{V_{p}}$-continuous. We remark that we can use the same idea to prove that $K$ is $\|\cdot\|_{v_{p}}$-continuous without using the fact that compactness implies continuity.

Next we shall prove a result for a countably infinite dimensional rank.
Lemma 1. Let $\left\{f_{j}\right\}$ be sequence offunctions in $B V_{p}$ and $g \in B V_{q}$ with $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}>1$. Suppose $\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{V_{p}}<\infty$ and $\left\{h_{j}\right\}$ a sequence of functions such that, for each $x \in[a, b],\left|h_{j}(x)\right| \leq A(x)<\infty$, for all $j$ and $\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)$ exists for any $x, t \in[a, b]$. Then, for each $x \in[a, b], \sum_{j=1}^{\infty} h_{j}(x) f_{j}(t) \in$ $B V_{p}$ and for each $\varphi \in B V_{p}$,

$$
\int_{a}^{b}\left(\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t)=\sum_{j=1}^{\infty} h_{j}(x) \int_{a}^{b} f_{j}(t) \varphi(t) d g(t) .
$$

Proof. Let $m, n \in \mathbb{N}$ be fixed. For any fixed $x$, we have

$$
V_{p}\left(\sum_{j=m}^{n} h_{j}(x) f_{j}(t)\right) \leq \sum_{j=m}^{n}\left|h_{j}(x)\right| V_{p}\left(f_{j}(t)\right) \leq A(x) \sum_{j=m}^{n} V_{p}\left(f_{j}\right) .
$$

Then

$$
\begin{aligned}
V_{p}\left(\sum_{j=m}^{\infty} h_{j}(x) f_{j}(t)\right) & =V_{p}\left(\lim _{n \rightarrow \infty} \sum_{j=m}^{n} h_{j}(x) f_{j}(t)\right) \\
& \leq A(x) \lim _{n \rightarrow \infty} \sum_{j=m}^{n} V\left(f_{j}\right)=A(x) \sum_{j=m}^{\infty} V_{p}\left(f_{j}\right) \leq A(x) \sum_{j=m}^{\infty}\left\|f_{j}\right\|_{V_{p}} .
\end{aligned}
$$

Thus $V_{p}\left(\sum_{j=m}^{\infty} h_{j}(x) f_{j}(t)\right) \rightarrow 0$ as $m \rightarrow \infty$. Hence, for each $x \in[a, b]$,

$$
V_{p}\left(\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)\right)<\infty .
$$

Therefore $\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t) \in B V_{p}$, for each $x \in[a, b]$. We remark that this result, in fact, is a consequence of the completeness of $B V_{p}$.

Notice that, by Theorem 3 and Corollary 2,

$$
\begin{aligned}
& \left|\int_{a}^{b}\left(\sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t)\right| \\
& \quad \leq\left\|\sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t) \varphi(t)\right\|_{\infty} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p_{1}}+\frac{1}{q}\right)\right\} V_{p}\left(\sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t) \varphi(t)\right) V_{q}(g) \\
& \quad \leq\|\varphi\|_{\infty}\left\|\sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t)\right\|_{\infty} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p_{1}}+\frac{1}{q}\right)\right\}\|\varphi(t)\|_{V_{p}}\left\|\sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t)\right\|_{V_{p}} V_{q}(g) .
\end{aligned}
$$

Hence $\left|\int_{a}^{b}\left(\sum_{j=n+1}^{\infty} h_{j}(x) g_{j}(t)\right) \varphi(t) d t\right| \rightarrow 0$ as $n \rightarrow \infty$. Observe that

$$
\begin{aligned}
& \int_{a}^{b}\left(\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t)-\sum_{j=1}^{n} \int_{a}^{b} h_{j}(x) f_{j}(t) \varphi(t) d g(t)=\int_{a}^{b}\left(\sum_{j=n+1}^{\infty} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t) . \\
& \qquad \lim _{n \rightarrow \infty} \int_{a}^{b}\left(\sum_{j=1}^{n} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t)=\int_{a}^{b}\left(\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t) .
\end{aligned}
$$

The following lemma is proved by Abel's transformation, see [1, Ch.2, p.365], which is crucial in this paper.

Lemma 2. Let $\left\{a_{j}\right\}$ be a sequence in a normed spaces $S$ with norm $\|\cdot\|_{S}$ and $\left\{b_{j}\right\}$ a real-valued sequence such that $\sum_{j=1}^{\infty} a_{j}$ and $\sum_{j=1}^{\infty}\left|b_{j+1}-b_{j}\right|$ exist. Then $\lim _{j \rightarrow \infty} b_{j}, \sum_{j=1}^{\infty} a_{j} b_{j}$ exist and, for each $m=1,2, \ldots$,

$$
\begin{equation*}
\left\|\sum_{j=m}^{\infty} a_{j} b_{j}\right\|_{S} \leq 2 A \sum_{j=m}^{\infty}\left|b_{j+1}-b_{j}\right|+\left\|\sum_{k=m}^{\infty} a_{k}\right\|_{S}|b|, \tag{2}
\end{equation*}
$$

where $A=\sup _{n}\left\|\sum_{j=1}^{n} a_{j}\right\|_{S}$ and $b=\lim _{j \rightarrow \infty} b_{j}$.
Lemma 3. Let $\left\{f_{j}\right\}$ and $\left\{h_{j}\right\}$ be sequences of functions in $B V_{p}$ and $g \in B V_{q}$ with $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}>1$. Suppose that $\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{V_{p}}<\infty$ and for each $x \in[a, b], \sum_{j=1}^{\infty} h_{j}(x)$ exists.
(i) Then, for each $x$, there exists $0<A(x)<\infty$ such that $\left|h_{j}(x)\right| \leq A(x)$ for each $j$ and $\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)$ exists for any $x, t \in[a, b]$.
(ii) Let $\varphi \in B V_{p}$ and $\alpha_{j}=\int_{a}^{b} f_{j}(t) \varphi(t) d g(t)$. Then $\sum_{j=1}^{\infty}\left|\alpha_{j+1}-\alpha_{j}\right|<\infty$ and $\sum_{j=1}^{\infty} h_{j} \alpha_{j} \in B V_{p}$.

Proof. (i) By given condition, for each $x, \sum_{j=1}^{\infty} h_{j}(x)$ exists. Hence there exists $0<A(x)<\infty$ such that $\left|h_{j}(x)\right| \leq A(x)$ for each $j$. Apply Lemma 2 to two real-valued sequences with $a_{j}=h_{j}(x)$ and $b_{j}=f_{j}(t)$ we have $\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)$ exists for any $x, t \in[a, b]$.
(ii) First, by Theorem 3 and Corollary 2, we have

$$
\begin{aligned}
\left|\alpha_{j+1}-\alpha_{j}\right| & =\left|\int_{a}^{b}\left(f_{j+1}(t)-f_{j}(t)\right) \varphi(t) d g(t)\right| \\
& \leq\|\varphi\|_{\infty}\left\|f_{j+1}-f_{j}\right\|_{\infty} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p_{1}}+\frac{1}{q}\right)\right\}\left\|f_{j+1}-f_{j}\right\|_{V_{p}}\|\varphi\|_{V_{p}} V_{q}(g) .
\end{aligned}
$$

Hence $\sum_{j=1}^{\infty}\left|\alpha_{j+1}-\alpha_{j}\right|<\infty$.
For each $x \in[a, b]$, apply Lemma 2 to two real-valued sequences, $a_{j}=h_{j}(x)$ and $b_{j}=\alpha_{j}$, we have $\sum_{j=1}^{\infty} h_{j}(x) \alpha_{j}$ exists.

Now apply Lemma 2 to a real-valued sequence $\left\{\alpha_{j}\right\}$ and a sequence $\left\{h_{j}\right\}$ in the normed space with norm $\|\cdot\|_{V_{p}}$, we have $\sum_{j=1}^{\infty} h_{j} \alpha_{j}$ exists under norm $\|\cdot\|_{V_{p}}$. Thus $\left\{\sum_{j=1}^{n} h_{j} \alpha_{j}\right\}$ is Cauchy under $\|\cdot\|_{V_{p}}$. Therefore, there exists $\psi \in B V_{p}$ such that $\left\|\sum_{j=1}^{n} h_{j} \alpha_{j}-\psi\right\|_{V_{p}} \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\sum_{j=1}^{\infty} h_{j} \alpha_{j} \in B V_{p}$.
Theorem 7. Let $\left\{f_{j}\right\}$ and $\left\{h_{j}\right\}$ be sequences offunctions in $B V_{p}$ such that $\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{V_{p}}<\infty$, for each $x \in[a, b], \sum_{j=1}^{\infty} h_{j}(x)$ exists and $g \in B V_{q}$ with $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}>1$. Let $K, K_{n}:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow$ ( $B V_{p},\|\cdot\|_{V_{p}}$ ) be linear operators defined by

$$
\begin{aligned}
& \left(K_{n} \varphi\right)(x)=\int_{a}^{b}\left(\sum_{j=1}^{n} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t) . \\
& (K \varphi)(x)=\int_{a}^{b}\left(\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t) .
\end{aligned}
$$

Then $\left\|K_{n}-K\right\| \rightarrow 0$ as $n \rightarrow \infty$. Furthermore $K$ is continuous and compact.
Proof. By Lemmas 1 and 3 (i), for each $x, t \in[a, b], \sum_{j=1}^{\infty} h_{j}(x) g_{j}(t)$ exists and

$$
(K \varphi)(x)=\int_{a}^{b}\left(\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t)=\sum_{j=1}^{\infty} h_{j}(x) \int_{a}^{b} \varphi f_{j} d g=\sum_{j=1}^{\infty} h_{j}(x) \alpha_{j},
$$

where $\alpha_{j}=\int_{a}^{b} \varphi(t) f_{j}(t) d g(t)$. Thus $\left(K-K_{n}\right) \varphi(x)=\sum_{j=n+1}^{\infty} h_{j}(x) \alpha_{j}$.
Hence, $\left\|\left(K-K_{n}\right) \varphi\right\|_{V_{p}}=\left\|\sum_{j=n+1}^{\infty} h_{j} \alpha_{j}\right\|_{V_{p}}$. By Lemma 3 (ii),

$$
\left\|\left(K-K_{n}\right)(\varphi)\right\|_{V_{p}} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

By the Banach-Steinhaus theorem (Theorem 5), $K$ is continuous. Now, we shall prove that $\left\|K_{n}-K\right\| \rightarrow$ 0 as $n \rightarrow \infty$. Recall that $\sum_{j=1}^{\infty}\left|\alpha_{j+1}-\alpha_{j}\right|<\infty$. Let $\alpha=\lim _{j \rightarrow \infty} \alpha_{j}$. Apply Lemma 2 to $\left\{a_{j}\right\}$, where $a_{j}=h_{j}$ with norm $\|\cdot\|_{V_{p}}$, and $b_{j}=\alpha_{j}$, use inequality (2), we have

$$
\left\|\left(K-K_{n}\right) \varphi\right\|_{V_{p}}=\left\|\sum_{j=n+1}^{\infty} h_{j} \alpha_{j}\right\|_{V_{p}} \leq 2 \sup _{j}\left\|\sum_{k=1}^{j} h_{k}\right\|_{V_{p}} \sum_{j=n+1}^{\infty}\left|\alpha_{j}-\alpha_{j+1}\right|+\left\|\sum_{k=n+1}^{\infty} h_{k}\right\|_{V_{p}}|\alpha| .
$$

Now we shall estimate $\sum_{j=n+1}^{\infty}\left|\alpha_{j+1}-\alpha_{j}\right|$ and $|\alpha|$ in the above inequality. Since $\|\varphi\|_{V_{p}}=V_{p}(\varphi)+\|\varphi\|_{\infty}$, we have $\|\varphi\|_{\infty} \leq\|\varphi\|_{V_{p}}$ and $V_{p}(\varphi) \leq\|\varphi\|_{V_{p}}$. Then, by Theorem 3,

$$
\begin{aligned}
\left|\alpha_{j+1}-\alpha_{j}\right| & =\left|\int_{a}^{b}\left(f_{j+1}(t)-f_{j}(t)\right) \varphi(t) d g(t)\right| \\
& \leq\|\varphi\|_{\infty}\left\|f_{j+1}-f_{j}\right\|_{\infty} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\}\left\|f_{j+1}-f_{j}\right\|_{V_{p}}\|\varphi\|_{V_{p}} V_{q}(g) \\
& \leq\|\varphi\|_{V_{p}}\left\|f_{j+1}-f_{j}\right\|_{V_{p}} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\}\left\|f_{j+1}-f_{j}\right\|_{V_{p}}\|\varphi\|_{V_{p}} V_{q}(g) \\
& \leq 4\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\}\|\varphi\|_{V_{p}}\left\|f_{j+1}-f_{j}\right\|_{V_{p}} V_{q}(g)
\end{aligned}
$$

Note that $\alpha=\lim _{j \rightarrow \infty} \alpha_{j}$ and $\alpha_{j}=\int_{a}^{b} \varphi(t) f_{j}(t) d g(t)$. By Theorem 3 and Corollary 2,

$$
\begin{aligned}
|\alpha| & =\lim _{j \rightarrow \infty}\left|\alpha_{j}\right|=\lim _{j \rightarrow \infty}\left|\int_{a}^{b} \varphi(t) f_{j}(t) d g(t)\right| \\
& \leq\|\varphi\|_{\infty} \lim _{j \rightarrow \infty}\left\|f_{j}\right\|_{\infty} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\}\|\varphi\|_{V_{p}} \lim _{j \rightarrow \infty}\left\|f_{j}\right\|_{V_{p}} V_{q}(g) \\
& \leq\|\varphi\|_{\infty} \sum_{j=1}^{\infty}\left\|f_{j}\right\|_{\infty} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\}\|\varphi\|_{V_{p}} \sum_{j=1}^{\infty}\left\|f_{j}\right\|_{V_{p}} V_{q}(g) \\
& \leq\|\varphi\|_{V_{p}} \sum_{j=1}^{\infty}\left\|f_{j}\right\|_{V_{p}} V_{q}(g)+3\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\}\|\varphi\|_{V_{p}} \sum_{j=1}^{\infty}\left\|f_{j}\right\|_{V_{p}} V_{q}(g) \\
& \leq 4\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\}\|\varphi\|_{V_{p}} \sum_{j=1}^{\infty}\left\|f_{j}\right\|_{V_{p}} V_{q}(g) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|\left(K-K_{n}\right)\right\|= & \sup _{\varphi} \frac{\left\|\left(K-K_{n}\right) \varphi\right\|_{V_{p}}}{\|\varphi\|_{V_{p}}} \\
\leq & 2 \sup _{j}\left\|\sum_{k=1}^{j} h_{k}\right\|_{V_{p}} \sum_{j=n+1}^{\infty} 4\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\}\left\|f_{j+1}-f_{j}\right\|_{V_{p}} V_{q}(g) \\
& +\left\|\sum_{k=n+1}^{\infty} h_{k}\right\|_{V_{p}} 4\left\{1+\zeta\left(\frac{1}{p}+\frac{1}{q}\right)\right\} \sum_{j=1}^{\infty}\left\|f_{j}\right\|_{V_{p}} V_{q}(g) .
\end{aligned}
$$

Hence $\left\|K_{n}-K\right\| \rightarrow 0$ as $n \rightarrow \infty$. Note that each $K_{n}$ is a linear operator of finite rank. Hence each $K_{n}$ is compact. Thus $K$ is compact, i.e., for any bounded sequence $\left\{\varphi_{n}\right\}$ in $B V_{p}$, there exists a subsequence $\left\{\varphi_{n_{k}}\right\}$ such that $\left\{K \varphi_{n_{k}}\right\}$ is convergent in $B V_{p}$ under $\|\cdot\|_{V_{p}}$. to $\mathbb{R}$, i.e., the function $h(t, \cdot)$ is continuous for all $t \in[a, b]$ and the function $h(\cdot, s)$ is measurable for every $s \in \mathbb{R}$, [6, p. 349, Chapter 5]

Let $\varphi$ be a function defined on $[a, b]$ and $H \varphi$ a function defined on $[a, b]$ and $(H \varphi)(t)=h(t, \varphi(t))$. The operator $H$ is called a Nemytskii operator. In the following, we assume that the following Lipschitz condition holds for the function $h(t, s)$, i.e., there exists a positive numbers $\kappa$ such that

$$
\begin{equation*}
\left|h\left(t_{1}, s_{1}\right)-h\left(t_{2}, s_{2}\right)\right| \leq \kappa\left(\left|t_{1}-t_{2}\right|+\left|s_{1}-s_{2}\right|\right) \tag{3}
\end{equation*}
$$

for all $t_{1}, t_{2} \in[a, b]$ and all $s_{1}, s_{2} \in \mathbb{R}$.
Lemma 4. Let $H$ be a Nemytskii operator defined as above and $\varphi \in B V_{p}$. Then
(i) $V_{p}(H \varphi) \leq 2 \kappa\left(|b-a|+V_{p}(\varphi)\right)$;
(ii) $\|H \varphi\|_{\infty} \leq \kappa\left(|b-a|+2\|\varphi\|_{\infty}+\left|h\left(t_{0}, M_{\varphi}\right)\right|\right)$, where $t_{0} \in[a, b]$ is fixed and $h\left(t_{0}, M_{\varphi}\right)=\sup \left\{h\left(t_{0}, s\right)\right.$ : $\left.-\|\varphi\|_{\infty} \leq s \leq\|\varphi\|_{\infty}\right\}$;
(iii) the operator $H:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ and $H$ maps a bounded sequence in $\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ to a bounded sequence in $\left(B V_{p},\|\cdot\|_{V_{p}}\right)$.
Proof. By inequality (3), we get

$$
\left|h\left(t_{1}, \varphi\left(t_{1}\right)\right)-h\left(t_{2}, \varphi\left(t_{2}\right)\right)\right|^{p} \leq 2^{p} \kappa^{p}\left(\left|t_{1}-t_{2}\right|^{p}+\left|\varphi\left(t_{1}\right)-\varphi\left(t_{2}\right)\right|^{p}\right) .
$$

Hence

$$
\begin{aligned}
V_{p}^{p}(h(t, \varphi(t))) & \leq 2^{p} \kappa^{p}\left(V_{p}^{p}(t)+V_{p}^{p}(\varphi(t))\right) \\
& \leq 2^{p} \kappa^{p}\left(V_{1}^{p}(t)+V_{p}^{p}(\varphi(t))\right) \\
& =2^{p} \kappa^{p}\left(|b-a|^{p}+V_{p}^{p}(\varphi(t))\right)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
V_{p}(h(t, \varphi(t))) & \leq\left(2^{p} \kappa^{p}\left(|b-a|^{p}+V_{p}^{p}(\varphi(t))\right)\right)^{\frac{1}{p}} \\
& <2 \kappa\left(\left(|b-a|^{p}\right)^{\frac{1}{p}}+\left(V_{p}^{p}(\varphi(t))\right)^{\frac{1}{p}}\right) \\
& =2 \kappa\left(|b-a|+V_{p}(\varphi(t))\right) .
\end{aligned}
$$

Therefore (i) holds. Thus $(H \varphi)(t)=h(t, \varphi(t))$ is in $B V_{p}$ if $\varphi \in B V_{p}$. Furthermore $\left\{V_{p}\left(H \varphi_{n}\right)\right\}$ is bounded if $\left\{V_{p}\left(\varphi_{n}\right)\right\}$ is bounded.

On the other hand,

$$
|h(t, \varphi(t))| \leq \kappa\left(\left|t-t_{0}\right|+\left|\varphi(t)-\varphi\left(t_{0}\right)\right|\right)+\left|h\left(t_{0}, \varphi\left(t_{0}\right)\right)\right|
$$

Suppose $\|\varphi\|_{\infty} \leq \alpha$, i.e., $-\alpha \leq \varphi(t) \leq \alpha$ and all $t \in[a, b]$. Recall that for a fixed $t_{0}, h\left(t_{0}, \cdot\right)$ is continuous on $[-\alpha, \alpha]$. Thus, there exists $M_{\varphi} \in[-\alpha, \alpha]$ such that $\left|h\left(t_{0}, \varphi\left(t_{0}\right)\right)\right| \leq\left|h\left(t_{0}, M_{\varphi}\right)\right|$. Hence,

$$
\begin{equation*}
\|H \varphi\|_{\infty} \leq \kappa\left(|b-a|+2\|\varphi\|_{\infty}\right)+\left|h\left(t_{0}, M_{\varphi}\right)\right| \tag{4}
\end{equation*}
$$

Thus (ii) holds. Therefore, $\left\{\left\|H \varphi_{n}\right\|_{\infty}\right\}$ is bounded if $\left\{\left\|\varphi_{n}\right\|_{\infty}\right\}$ is bounded. Consequently, (iii) holds. 7, i.e.,

$$
(K \varphi)(x)=\int_{a}^{b} k(x, t) \varphi(t) d g(t)=\int_{a}^{b}\left(\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)\right) \varphi(t) d g(t)
$$

Then the composite operator $K H$ maps $\left(B V_{p},\|\cdot\|_{V_{p}}\right.$ ) space to ( $B V_{p},\|\cdot\|_{V_{p}}$ ) space. Let $\varphi \in B V_{p}$, Then $(K H)(\varphi) \in B V_{p}$ and for each $x \in[a, b]$

$$
((K H)(\varphi))(x)=(K(H \varphi))(x)=\int_{a}^{b} k(x, t) h(t, \varphi(t)) d t .
$$

The composite operator $K H$ is called a Hammerstein operator.
Corollary 3. The nonlinear Hammerstein operator $K H:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ given above is compact.

Proof. By Lemma 4 (iii), the Nemytskii operator $H$ maps every bounded sequence under $\|\cdot\|_{V_{p}}$ to a bounded sequence under $\|\cdot\|_{V_{p}}$. By Theorem 7,K is compact. Therefore the composite Hammerstein operator $K H$ from ( $B V_{p},\|\cdot\|_{V_{p}}$ ) to ( $B V_{p},\|\cdot\|_{V_{p}}$ ) is compact.

## 4. Integral equations

The Fredholm-Stieltjes integral equation of the second kind is an equation of the form

$$
\begin{equation*}
\varphi(x)=\psi(x)+\lambda \int_{a}^{b} k(x, t) \varphi(t) d g(t) \tag{5}
\end{equation*}
$$

where $\psi:[a, b] \rightarrow \mathbb{R}$ and $k:[a, b] \times[a, b] \rightarrow \mathbb{R}$. The function $k$ is known as the integral kernel.
In this section, let $\psi, \varphi \in B V_{p}$, we first discuss the case when the integral kernel is separable, i.e., $k(x, t)=h(x) f(t)$. By the standard method we can show that the integral equation (5) has a unique solution. We shall write it down for easy reference. Suppose that $h, f \in B V_{p}$ and $g \in B V_{q}$.

The equation (5) becomes

$$
\begin{align*}
\varphi(x) & =\psi(x)+\lambda \int_{a}^{b} h(x) f(t) \varphi(t) d g(t)  \tag{6}\\
& =\psi(x)+\lambda h(x) \alpha,
\end{align*}
$$

where $\alpha=\int_{a}^{b} f(t) \varphi(t) d g(t)$. Multiply $f(x)$ the both side of the above equality, then integrate with respect to $g(x)$, we get

$$
\begin{gathered}
\int_{a}^{b} \varphi(x) f(x) d g(x)=\int_{a}^{b} \psi(x) f(x) d g(x)+\lambda \alpha \int_{a}^{b} h(x) f(x) d g(x) \\
\alpha=\int_{a}^{b} \psi(x) f(x) d g(x)+\lambda \alpha \int_{a}^{b} h(x) f(x) d g(x)
\end{gathered}
$$

Note that by Theorems 3 and 6, $\int_{a}^{b} \psi(x) f(x) d g(x)$ and $\int_{a}^{b} h(x) f(x) d g(x)$ exist. If $\lambda \int_{a}^{b} h(x) f(x) d g(x) \neq$ 1, then we get

$$
\alpha=\frac{\int_{a}^{b} \psi(x) f(x) d g(x)}{1-\lambda \int_{a}^{b} h(x) f(x) d g(x)}
$$

Hence, from Equation (6),

$$
\varphi(x)=\psi(x)+\lambda h(x) \alpha=\psi(x)+\lambda h(x) \frac{\int_{a}^{b} \psi(t) f(t) d g(t)}{1-\lambda \int_{a}^{b} h(t) f(t) d g(t)}
$$

is the unique solution of a Fredholm-Stieltjes integral equation with separable integral kernel whenever $\lambda \int_{a}^{b} h(t) f(t) d g(t) \neq 1$.

For the case when $\lambda \int_{a}^{b} h(t) f(t) d g(t)=1$, the equation has no solution, if $\int_{a}^{b} \psi(t) f(t) d g(t) \neq 0$.
Let $h_{j}, f_{j} \in B V_{p}, g \in B V_{q}$, for $j=1,2, \ldots, n$, and

$$
k(x, t)=\sum_{j=1}^{n} h_{j}(x) f_{j}(t)
$$

for $x, t \in[a, b]$. Then the corresponding Fredholm integral equation has properties analogous to the above case.

Linear Fredholm equations and the Kurzweil-Henstock integral have been addressed in [5].
Let us now return to the case in which the kernel $k(x, t)=\sum_{j=1}^{\infty} h_{j}(x) f_{j}(t)$ and the operator $K$ are the same as in Theorem 7. Let $\psi \in B V_{p}$ and $T \varphi=\psi+\lambda K \varphi$ for $\varphi \in B V_{p}$. Let $\|K\|=\sup \frac{\|K \varphi\|_{V_{p}}}{\|\varphi\|_{V_{p}}}$, where supremum is over all $\varphi \in B V_{p}$.

Theorem 8. Suppose there exists $\mu>0$ such that $\|K \varphi\|_{V_{p}} \leq \mu\|\varphi\|_{V_{p}}$ for each $\varphi$, i.e., $\|K\| \leq \mu$. For any $\lambda$ with $0<\lambda<\frac{1}{\mu}$, there exists a unique fixed point $\phi \in B V_{p}$, i.e.,

$$
\phi(x)=\psi(x)+\lambda(K \phi)(x)=\psi(x)+\lambda \int_{a}^{b} k(x, t) \phi(t) d g(t)
$$

This solution $\phi$ is given by a convergent Neumann series $\phi(x)=\sum_{i=1}^{\infty} \lambda^{i} K^{i} \psi$ and $\|\phi\|_{V_{p}} \leq \frac{1}{1-\lambda \mu}\|\psi\|_{V_{p}}$, where $K^{1}=K$ and $K^{i} \psi=K\left(K^{i-1} \psi\right), i=2,3,4, \ldots$

Proof. The proof is standard. Let $\phi_{0}(x)=\psi(x), \phi_{n}(x)=\psi+\lambda K \phi_{n-1}(x), n=1,2, \ldots$ Then $\phi_{n+1}(x)=$ $\sum_{i=0}^{n+1} \lambda^{i} K^{i} \phi(x), n=1,2, \ldots$. Since $\|K\| \leq \mu$, we have

$$
\left\|K^{i} \psi\right\|_{V_{p}}=\left\|K K^{i-1} \psi\right\|_{V_{p}} \leq \mu\left\|K^{i-1} \psi\right\|_{V_{p}} \leq \mu^{i}\|\psi\|_{V_{p}}
$$

Thus, for any $m, n \in \mathbb{N}$, we have

$$
\left\|\phi_{n}-\phi_{m}\right\|_{V_{p}}=\left\|\sum_{i=m+1}^{n} \lambda^{i} K^{i} \psi\right\|_{V_{p}} \leq \sum_{i=m+1}^{n} \lambda^{i}\left\|K^{i} \psi\right\|_{V_{p}}=\left(\sum_{i=m+1}^{n}(\lambda \mu)^{i}\right)\|\psi\|_{V_{p}}
$$

Since $0<\lambda \mu<1$ by our assumptions, the sequence $\left\{\phi_{n}\right\}$ is Cauchy under $\|\cdot\|_{V_{p}}$. Hence $\lim _{n \rightarrow \infty} \phi_{n}=$ $\sum_{i=0}^{\infty} \lambda^{i} K^{i} \psi$ exists in $B V_{p}$, if $0<\lambda<\frac{1}{\mu}$.

Let $\phi(x)=\sum_{i=0}^{\infty} \mu^{i}\left(K^{i} \psi\right)(x)$. Then $\phi(x)=\lim _{n \rightarrow \infty} \phi_{n}(x)$. By Theorem 7, $K$ is $\|\cdot\|_{V_{p}}$-continuous. From the iteration equation, $\phi_{n}(x)=\psi+\lambda K \phi_{n-1}(x)$ and the continuity of $K$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \phi_{n}(x) & =\psi+\lambda \lim _{n \rightarrow \infty} K \phi_{n-1}(x) \\
& =\psi+\lambda \lim _{n \rightarrow \infty} \int_{a}^{b} k(x, t) \phi_{n-1}(t) d g(t) \\
& =\psi+\lambda \int_{a}^{b} k(x, t)\left(\lim _{n \rightarrow \infty} \phi_{n-1}(t)\right) d g(t) \\
& =\psi+\lambda \int_{a}^{b} k(x, t) \phi(t) d g(t) .
\end{aligned}
$$

Thus, if $0<\lambda<\frac{1}{\mu}$, we can find $\phi \in B V_{p}$ such that $\phi(x)=\psi+\lambda \int_{a}^{b} k(x, t) \phi(t) d g(t)$.
Now we shall prove that the fixed point $\phi$ is unique. Suppose that there are two fixed points, namely $\phi$ and $\Phi$. Then $\phi=\psi+\lambda K \phi$ and $\Phi=\psi+\lambda K \Phi$. Therefore $\phi-\Phi=\lambda K(\phi-\Phi)$ and

$$
\|\phi-\Phi\|_{V_{p}}=\lambda\|K(\phi-\Phi)\|_{V_{p}} \leq \lambda\|K\|\|(\phi-\Phi)\|_{V_{p}} \leq \lambda \mu\|(\phi-\Phi)\|_{V_{p}} .
$$

Hence $(1-\lambda \mu)\|\phi-\Phi\|_{V_{p}} \leq 0$. Recall that $1-\lambda \mu>0$. It imply that $\|\phi-\Phi\|_{V_{p}}=0$. Thus $\|\phi-\Phi\|_{V_{p}}=0$. Consequently $\phi=\Phi$. Therefore the fixed point $\phi$ is unique.

Remark 1. We note that although $\mu$ is difficult to locate. However, according to Theorem 8 , if $\lambda$ is a sufficiently small positive number, then a unique fixed point exists.

Theorem 9 (Tychonoff's theorem). [9, Theorem A] Let C be a convex subset of a locally convex topological vector space. If $T$ is a continuous operator which maps $C$ into a compact subset of $C$, then $T$ has a fixed point in $C$.

Theorem 10. Let $T \varphi=\psi+\lambda(K H) \varphi$, where $K H$ is given before Corollary 3. Assume that $\psi \in B V_{p}$, $\frac{3 \kappa|b-a|+\left|h\left(t_{0}, M_{2 \psi}\right)\right|}{\|\psi\| V_{p}} \leq \beta$ and $\|K\| \leq \mu, 0<\lambda<\frac{1}{\mu(\beta+4 \kappa)}$. Then $T:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ has a fixed point.

Proof. By Lemma 4 (i) and (ii), we have

$$
\|H \varphi\|_{V_{p}}=V_{p}(H \varphi)+\|H \varphi\|_{\infty} \leq 3 \kappa|b-a|+2 \kappa\|\varphi\|_{V_{p}}+\left|h\left(t_{0}, M_{\varphi}\right)\right| .
$$

Since $K$ is continuous, we have

$$
\|K H \varphi\|_{V_{p}} \leq\|K\|\|H \varphi\|_{V_{p}} \leq\|K\|\left(3 \kappa|b-a|+2 \kappa\|\varphi\|_{V_{p}}+\left|h\left(t_{0}, M_{\varphi}\right)\right|\right) .
$$

## $-$

 $\lambda$ is a sufficiently small positive number, $T:\left(B V_{p},\|\cdot\|_{V_{p}}\right) \rightarrow\left(B V_{p},\|\cdot\|_{V_{p}}\right)$ has a fixed point.
## Acknowledgement

We would like to thank Professor Lee Peng Yee for his constructive comments on this paper.

## References

[1] T. M. Apostol: Mathematical Analysis, Addison Wesley, Reading, 1957.
[2] K. K. Aye and P. Y. Lee: The dual of the space of functions of bounded variation, Math. Bohem. 131(1) (2006), 1-9.
[3] V. Boonpogkrong and T. S. Chew: On integral with integrators in $B V_{p}$, Real Anal. Exch. 30(1) (2004), 193-200.
[4] D. Bugajewski, J. Gulgowski and P. Kasprzak: On continuity and compactness of some nonlinear operators in the spaces of functions of bounded variation, Ann. di Mat. Pura ed Appl. 195 (2016), 1513-1530.
[5] M. Federson and R. Bianconi: Linear Fredholm integral equations and the integral of Kurzweil, J. Appl. Anal. 8(1) (2002), 83-110.
[6] M. A. Krasnosel'skii: Integral Operators in Spaces of Summable Functions. English Edition, Noordhoff International, 1976.
[7] E. R. Love and L. C. Young: On fractional integration by parts, Proc. London Math. Soc., Ser. 2, 44 (1938), 1-35.
[8] G. A. Monteiro, A. Slavík and M. Tvrdý: Kurzweil-Stieltjes Integral Theory and Applications. Ser. Real Anal. Vol. 15, World Scientific, 2018.
[9] S. A. Morrisf and E. S. Noussair: The Schauder-Tychonoff fixed point theorem and applications. Matematický časopis 25(2) (1975), 165-172.
[10] H. L. Royden: Real Analysis, Third edition, Macmillan, 1989.
[11] S. Schwabik and G. Ye: Topics in Banach Space Integration. Ser. Real Anal. Vol. 10, World Scientific, 2005.
[12] L. C. Young: An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251-282.

Department of Mathematics, Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110 Thailand

Email address: varayu.b@psu.ac.th and b.varayu@gmail.com
Department of Mathematics, Faculty of Science, National University of Singapore, Singapore
Email address: tschew@nus.edu.sg

