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COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE 𝐵𝑉𝑝 SPACE

VARAYU BOONPOGKRONG AND TUAN SENG CHEW

Abstract. In this paper, compact operators and integral equations in terms of integral kernel in the
𝐵𝑉𝑝 space will be considered. The 𝐵𝑉𝑝 space is the space of all bounded 𝑝-variation on a compact
interval. The integral used in this paper is of Stieltjes-type. The integral is an integration with respect to
a function of bounded 𝑝-variation. A fractional Brownian motion in the stochastic integral is a processes
of bounded 𝑝-variation.

In this paper, let 𝐵𝑉𝑝 be the space of all bounded 𝑝-variation defined on a compact interval [𝑎, 𝑏].
We shall consider compact operators 𝐾 : 𝐵𝑉𝑝 → 𝐵𝑉𝑝 where 𝐾 are defined by

(𝐾𝜑) (𝑥) =
∫ 𝑏

𝑎
𝑘 (𝑥, 𝑡)𝜑(𝑡)𝑑𝑔(𝑡).

Integral equations considered are of the form

𝜑 = 𝜓 +𝜆𝐾𝜑.

The integral
∫ 𝑏
𝑎
𝑓 (𝑡)𝑑𝑔(𝑡) used here is the Kurzweil-Henstock-Young integral, which is a Stieltjes-type

integral. When 𝑓 ∈ 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞, where 1
𝑝 +

1
𝑞 > 1 and 𝑝, 𝑞 ≥ 1, then the integral

∫ 𝑏
𝑎
𝑓 (𝑡)𝑑𝑔(𝑡)

exists, see [3,7,12]. The kurzweil-Henstock approach is used to handle the integral, for the Kurzweil-
Henstock approach, see [8, 11].

1. Preliminaries

In this section, we shall present some results proved by L.C.Young in 1936, see [7, 12].
Definition 1. Let 𝑓 : [𝑎, 𝑏] → R and let 0 < 𝑝 <∞. Given a partition 𝑃 = {[𝑢𝑖, 𝑣𝑖]}𝑛𝑖=1 of [𝑎, 𝑏], let

𝑉𝑝 ( 𝑓 , 𝑃; [𝑎, 𝑏]) =
(
𝑛∑
𝑖=1

| 𝑓 (𝑣𝑖) − 𝑓 (𝑢𝑖) |𝑝
)1/𝑝

.

The 𝑝-variation of 𝑓 is defined by

𝑉𝑝 ( 𝑓 ; [𝑎, 𝑏]) = sup
𝑃
𝑉𝑝 ( 𝑓 , 𝑃; [𝑎, 𝑏]).

We say that 𝑓 is of bounded 𝑝-variation on [𝑎, 𝑏] or 𝑓 ∈ 𝐵𝑉𝑝 [𝑎, 𝑏], if𝑉𝑝 ( 𝑓 ; [𝑎, 𝑏]) <∞. In this paper,
we always denote 𝐵𝑉𝑝 [𝑎, 𝑏] and 𝑉𝑝 ( 𝑓 ; [𝑎, 𝑏]) by 𝐵𝑉𝑝 and 𝑉𝑝 ( 𝑓 ), respectively.

...

...
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From Jensen’s inequality, we have(∑
| 𝑓 (𝑣𝑖) − 𝑓 (𝑢𝑖) |𝑞

)1/𝑞
≤

(∑
| 𝑓 (𝑣𝑖) − 𝑓 (𝑢𝑖) |𝑝

)1/𝑝

whenever 0 < 𝑝 < 𝑞. If 𝑓 ∈ 𝐵𝑉𝑝 and 0 < 𝑝 < 𝑞, then 𝑉𝑞 ( 𝑓 ; [𝑎, 𝑏]) ≤ 𝑉𝑝 ( 𝑓 ; [𝑎, 𝑏]) <∞, i.e., 𝑓 ∈ 𝐵𝑉𝑞.
Hence, we have 𝐵𝑉𝑝 ⊆ 𝐵𝑉𝑞.

If 𝑓 ∈ 𝐵𝑉𝑝, then 𝑓 is bounded. Thus ∥ 𝑓 ∥∞ exists. Let ∥ 𝑓 ∥𝑉𝑝 = 𝑉𝑝 ( 𝑓 ) + ∥ 𝑓 ∥∞. It is well-known
that (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) is a Banach space, if 𝑝 ≥ 1.

Theorem 1. [3, Theorem 2.2; 12, p. 256, (6.2)]Let 𝑓 ∈ 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞, with 𝑝, 𝑞 > 0 and 1
𝑝 +

1
𝑞 > 1.

Then, for any partition 𝑃 = {[𝑡𝑖, 𝑡𝑖+1]}𝑛𝑖=1 of [𝑎, 𝑏] and 𝜉 = 𝑡𝑖 for some 𝑖 = 1,2, ..., 𝑛+1,����� 𝑛∑
𝑖=1

𝑓 (𝑡𝑖+1) (𝑔(𝑡𝑖+1) −𝑔(𝑡𝑖)) − 𝑓 (𝜉) (𝑔(𝑏) −𝑔(𝑎))
����� ≤ {

1+ 𝜁
(
1
𝑝
+ 1
𝑞

)}
𝑉𝑝 ( 𝑓 )𝑉𝑞 (𝑔),

where 𝜁
(

1
𝑝 +

1
𝑞

)
=

∑∞
𝑛=1 𝑛

−( 1
𝑝 +

1
𝑞 ) .

Corollary 1. [3, Corollary 2.3; 12, p. 257, (6.4)]Let 𝑓 ∈ 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞, with 𝑝, 𝑞 > 0 and
1
𝑝 +

1
𝑞 > 1. Then, for any two partitions, 𝐷 = {[𝑡𝑖, 𝑡𝑖+1]}𝑛𝑖=1 and 𝐷 ′ = {[𝑠 𝑗 , 𝑠 𝑗+1]}𝑚𝑗=1 of [𝑎, 𝑏], with any

𝜉𝑖 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝜂 𝑗 ∈ [𝑠 𝑗 , 𝑠 𝑗+1], we have���(𝐷)∑ 𝑓 (𝜉𝑖) (𝑔(𝑡𝑖+1) −𝑔(𝑡𝑖)) − (𝐷 ′)
∑

𝑓 (𝜂 𝑗)
(
𝑔(𝑠 𝑗+1) −𝑔(𝑠 𝑗)

) ��� ≤ 2
{
1+ 𝜁

(
1
𝑝
+ 1
𝑞

)}
𝑉𝑝 ( 𝑓 )𝑉𝑞 (𝑔),

where 𝜁
( 1
𝑝 +

1
𝑞

)
=

∞∑
𝑛=1

𝑛−(
1
𝑝 +

1
𝑞 ) .

A finite collection 𝑃 = {𝐼} of nonoverlapping closed subintervals of [𝑎, 𝑏] is said to be a partition
of [𝑎, 𝑏] if ∪𝐼 ∈𝑃 𝐼 = [𝑎, 𝑏]. Let 𝛿 be a positive function on [𝑎, 𝑏] and I be a closed subinterval of [𝑎, 𝑏].
An interval point-pair (𝐼, 𝜉) is said to be 𝛿-fine if 𝜉 ∈ 𝐼 ⊂ (𝜉 − 𝛿(𝜉), 𝜉 + 𝛿(𝜉)). A finite collection of
interval-point pairs, 𝐷 = {(𝐼, 𝜉)}, is called a 𝛿-fine division of [𝑎, 𝑏] if each (𝐼, 𝜉) is 𝛿-fine and {𝐼} is
a partition of [𝑎, 𝑏].

Now we shall introduce Kurzweil-Henstock-Young integrals.

Definition 2. [3, Definition 1.2] Let 𝑓 , 𝑔 : [𝑎, 𝑏] → R. Then 𝑓 is said to be Kurzweil-Henstock-Young
integrable (or KHY-integrable) to real number 𝐴 on [𝑎, 𝑏] with respect to 𝑔 if for every 𝜖 > 0, there
exists a positive function 𝛿 defined on [𝑎, 𝑏] such that for every 𝛿-fine division 𝐷 = {(𝐼, 𝜉)} of [𝑎, 𝑏],
we have

|𝑆( 𝑓 , 𝛿, 𝐷) − 𝐴| ≤ 𝜖,
where 𝑆( 𝑓 , 𝛿, 𝐷) = (𝐷)∑ 𝑓 (𝜉)𝑔(𝐼), 𝑔(𝐼) = 𝑔(𝑣) − 𝑔(𝑢) and 𝐼 = [𝑢, 𝑣]. In this paper, the value 𝐴 is
denoted by

∫ 𝑏
𝑎
𝑓 𝑑𝑔.

Theorem 2 (Existence Theorem). [3, Theorem 3.5] Let 𝑓 ∈ 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞, with 𝑝, 𝑞 ≥ 1 and
1
𝑝 +

1
𝑞 > 1, then 𝑓 is KHY-integrable with respect to 𝑔.

The following Theorem has been proved for the Young integral in [12, p. 266], we shall prove it for
the KHY-integral. This theorem is crucial in this paper.
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Theorem 3. If 𝑓 ∈ 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞, with 𝑝, 𝑞 ≥ 1 and 1
𝑝 +

1
𝑞 > 1, then����∫ 𝑏

𝑎
𝑓 𝑑𝑔

���� ≤ ∥ 𝑓 ∥∞𝑉𝑞 (𝑔) +3
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
𝑉𝑝 ( 𝑓 )𝑉𝑞 (𝑔).

Proof. Let 𝜖 > 0 be given. By Theorem 2, there exists a positive function 𝛿 such that for every 𝛿-fine
division 𝐷 = {([𝑢𝑖, 𝑣𝑖], 𝜉𝑖)} of [𝑎, 𝑏],

(1)
����∫ 𝑏

𝑎
𝑓 𝑑𝑔− (𝐷)

∑
𝑓 (𝜉𝑖) (𝑔(𝑣𝑖) −𝑔(𝑢𝑖))

���� < 𝜖.
By Theorem 1, Corollary 1 and inequality (1), we have����∫ 𝑏

𝑎
𝑓 𝑑𝑔

���� ≤ ���� 𝑓 (𝑎)(𝑔(𝑏) −𝑔(𝑎))����+ ����∫ 𝑏

𝑎
𝑓 𝑑𝑔− 𝑓 (𝑎) (𝑔(𝑏) −𝑔(𝑎))

����
≤ ∥ 𝑓 ∥∞𝑉𝑞 (𝑔) +

����∫ 𝑏

𝑎
𝑓 𝑑𝑔− (𝐷)

∑
𝑓 (𝜉𝑖)(𝑔(𝑡𝑖+1) −𝑔(𝑡𝑖))

����
+
���(𝐷)∑ 𝑓 (𝜉𝑖)(𝑔(𝑡𝑖+1) −𝑔(𝑡𝑖)) −

∑
𝑓 (𝑡𝑖+1) (𝑔(𝑡𝑖+1) −𝑔(𝑡𝑖))

���
+
���∑ 𝑓 (𝑡𝑖+1) (𝑔(𝑡𝑖+1) −𝑔(𝑡𝑖)) − 𝑓 (𝑎) (𝑔(𝑏) −𝑔(𝑎))

���
≤ ∥ 𝑓 ∥∞𝑉𝑞 (𝑔) + 𝜖 +2

{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
𝑉𝑝 ( 𝑓 )𝑉𝑞 (𝑔) +

{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
𝑉𝑝 ( 𝑓 )𝑉𝑞 (𝑔)

Since 𝜖 is arbitrary, ����∫ 𝑏

𝑎
𝑓 𝑑𝑔

���� ≤ ∥ 𝑓 ∥∞𝑉𝑞 (𝑔) +3
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
𝑉𝑝 ( 𝑓 )𝑉𝑞 (𝑔).

�

In this note, from now onwards, we always assume that 𝑝, 𝑞 ≥ 1.

2. Continuous linear operators in 𝑩𝑽𝒑 spaces

An operator𝑇 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑞, ∥ · ∥𝑉𝑞 ) is said to be continuous if ∥𝑇𝜑𝑛−𝑇𝜑∥𝑉𝑞 → 0 as 𝑛→∞
whenever ∥𝜑𝑛−𝜑∥𝑉𝑝 → 0 as 𝑛→∞.

Let 𝑇 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑞, ∥ · ∥𝑉𝑞 ) be linear. Suppose 𝑇 is continuous. Define

∥𝑇 ∥ = sup
{ ∥𝑇𝜑∥𝑉𝑞
∥𝜑∥𝑉𝑝

: 𝜑 ∈ 𝐵𝑉𝑝
}
.

Thus ∥𝑇 ∥ is a norm of 𝑇 . Note that ∥𝑇𝜑∥𝑉𝑞 ≤ ∥𝑇 ∥∥𝜑∥𝑉𝑝 for all 𝜑, if 𝑇 is continuous.
Let 𝐵(𝐵𝑉𝑝) be the space of all continuous operators from (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) to (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ). Let

(𝐵𝑉𝑝)★ be the space of all continuous linear functionals defined on 𝐵𝑉𝑝.

Theorem 4. 𝐵(𝐵𝑉𝑝) and (𝐵𝑉𝑝)★ are complete.

Proof. The proof is standard, see [10, p.221, proposition 3]. �
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The Banach-Steinhaus theorem, the open mapping theorem, the bounded inverse theorem and the
closed graph theorem hold true for linear continuous operators from the 𝐵𝑉𝑝 space to any Banach
spaces. We shall only state the Banach-Steinhaus theorem.

Theorem 5 (Banach-Steinhaus). [10, P 232, Proposition 13 and Problem 26] For each 𝑛 ∈ N, let
𝑇𝑛 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑞, ∥ · ∥𝑉𝑞 ) be linear and continuous. If for each 𝜑 in 𝐵𝑉𝑝, the sequence
{𝑇𝑛𝜑} converges to a value𝑇𝜑, i.e., ∥𝑇𝑛𝜑−𝑇𝜑∥𝑉𝑞 → 0 as 𝑛→∞, then𝑇 : 𝐵𝑉𝑝→ 𝐵𝑉𝑞 is a continuous
linear operator.

We remark that the 𝐵𝑉𝑞 can be replaced by any Banach spaces.

Theorem 6. Let 𝑓 ∈ 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞. If 𝑞 ≤ 𝑝, then 𝑓 𝑔 ∈ 𝐵𝑉𝑝 and

𝑉𝑝 ( 𝑓 𝑔) ≤ ∥𝑔∥∞𝑉𝑝 ( 𝑓 ) + ∥ 𝑓 ∥∞𝑉𝑝 (𝑔).

Proof. Let 𝑃 = {[𝑢, 𝑣]} be a partition of [𝑎, 𝑏]. Since 𝑔 ∈ 𝐵𝑉𝑞 and 𝑞 ≤ 𝑝, 𝑔 ∈ 𝐵𝑉𝑝. By Minkowski
inequality, we have(∑
𝑃

| ( 𝑓 𝑔) (𝑣) − ( 𝑓 𝑔)(𝑢) |𝑝
)1/𝑝

=

(∑
𝑃

| 𝑓 (𝑣)𝑔(𝑣) − 𝑓 (𝑢)𝑔(𝑢) |𝑝
)1/𝑝

=

(∑
𝑃

| 𝑓 (𝑣)𝑔(𝑣) − 𝑓 (𝑢)𝑔(𝑣) + 𝑓 (𝑢)𝑔(𝑣) − 𝑓 (𝑢)𝑔(𝑢) |𝑝
)1/𝑝

≤
(∑
𝑃

| 𝑓 (𝑣)𝑔(𝑣) − 𝑓 (𝑢)𝑔(𝑣) |𝑝
)1/𝑝

+
(∑
𝑃

| 𝑓 (𝑢)𝑔(𝑣) − 𝑓 (𝑢)𝑔(𝑢) |𝑝
)1/𝑝

≤
(∑
𝑃

∥𝑔∥ 𝑝∞ | 𝑓 (𝑣) − 𝑓 (𝑢) |𝑝
)1/𝑝

+
(∑
𝑃

∥ 𝑓 ∥ 𝑝∞ |𝑔(𝑣) −𝑔(𝑢) |𝑝
)1/𝑝

≤ ∥𝑔∥∞𝑉𝑝 ( 𝑓 ) + ∥ 𝑓 ∥∞𝑉𝑝 (𝑔).

Since the partition 𝑃 is arbitrary, 𝑉𝑝 ( 𝑓 𝑔) ≤ ∥𝑔∥∞𝑉𝑝 ( 𝑓 ) + ∥ 𝑓 ∥∞𝑉𝑝 (𝑔) and 𝑓 𝑔 ∈ 𝐵𝑉𝑝. �

Notice that

∥𝑔∥∞𝑉𝑝 ( 𝑓 ) + ∥ 𝑓 ∥∞𝑉𝑝 (𝑔) ≤ ∥𝑔∥𝑉𝑝𝑉𝑝 ( 𝑓 ) + ∥ 𝑓 ∥∞∥𝑔∥𝑉𝑝 = ∥𝑔∥𝑉𝑝 (𝑉𝑝 ( 𝑓 ) + ∥ 𝑓 ∥∞) = ∥ 𝑓 ∥𝑉𝑝 ∥𝑔∥𝑉𝑝 .

Hence we have

Corollary 2. Let 𝑓 ∈ 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞. If 𝑞 ≤ 𝑝, then

𝑉𝑝 ( 𝑓 𝑔) ≤ ∥ 𝑓 ∥𝑉𝑝 ∥𝑔∥𝑉𝑝 .

Example 1. Let 𝑔 ∈ 𝐵𝑉𝑞, 𝑓𝑛 ∈ 𝐵𝑉𝑝 and 𝜑 ∈ 𝐵𝑉𝑝. By Theorem 6, 𝜑 𝑓𝑛 ∈ 𝐵𝑉𝑝. Hence, by Theorem
2,

∫ 𝑏
𝑎
𝜑 𝑓𝑛𝑑𝑔 exists if 1

𝑝 +
1
𝑞 > 1. Let 𝑇𝑛 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → R be defined by 𝑇𝑛𝜑 =

∫ 𝑏
𝑎
𝜑 𝑓𝑛𝑑𝑔, where

𝑓𝑛 ∈ 𝐵𝑉𝑝 with 𝑝, 𝑞 ≥ 1 and 1
𝑝 +

1
𝑞 > 1. Then 𝑇𝑛 is continuous. Suppose lim𝑛→∞

∫ 𝑏
𝑎
𝜑 𝑓𝑛𝑑𝑔 exists. Then,

by Theorem 5, 𝑇 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → R defined by 𝑇𝜑 = lim𝑛→∞
∫ 𝑏
𝑎
𝜑 𝑓𝑛𝑑𝑔 is continuous.

Submitted to Journal of Integral Equations and Applications - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

31 Jan 2024 18:25:26 PST
230601-Boonpogkrong Version 2 - Submitted to J. Integr. Eq. Appl.
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Example 2. Let { 𝑓 𝑗} and {ℎ𝑖} be sequences of functions in 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞 with 𝑝, 𝑞 ≥ 1 and 1
𝑝 +

1
𝑞 > 1.

Let 𝑇𝑛 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) be defined by (𝑇𝑛𝜑) (𝑥) =
∑𝑛
𝑗=1

∫ 𝑏
𝑎
ℎ 𝑗 (𝑥)𝜑(𝑡) 𝑓 𝑗 (𝑡)𝑑𝑔(𝑡) =∑𝑛

𝑗=1 ℎ 𝑗 (𝑥)
∫ 𝑏
𝑎
𝜑(𝑡) 𝑓 𝑗 (𝑡)𝑑𝑔(𝑡). By Theorem 6, 𝑇𝑛 is well-defined. Then each 𝑇𝑛 : 𝐵𝑉𝑝 → 𝐵𝑉𝑝 is a

linear operator of finite rank. Hence 𝑇𝑛 is continuous. Suppose {𝑇𝑛𝜑} is ∥ · ∥𝑉𝑝 -convergent to 𝑇𝜑 in
𝐵𝑉𝑝 for each 𝜑 ∈ 𝐵𝑉𝑝. Then, by the Banach-Steinhaus Theorem (Theorem 5), 𝑇 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) →
(𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) is continuous.

We shall discuss the compactness of 𝑇 in the next section.

Operators in the 𝐵𝑉𝑝 space have also been discussed in [4, 5, 8].

3. Compact operators in the 𝑩𝑽𝒑 space

A sequence {𝜑𝑛} in (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) is said to be bounded if {𝜑𝑛} is bounded under ∥ · ∥𝑉𝑝 . Let𝐶 ⊆ 𝐵𝑉𝑝.
𝐶 is said to be compact if for any bounded sequence in𝐶 there exists a ∥ · ∥𝑉𝑝 -convergent subsequence.

An operator 𝑇 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) is said to be compact if for any bounded sequence
{𝜑𝑛} in 𝐵𝑉𝑝, there exists a subsequence {𝜑𝑛𝑘 } such that {𝑇𝜑𝑛𝑘 } is convergent in 𝐵𝑉𝑝.

Using subsequence argument, as in Banach spaces, if 𝑇 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) is linear
and compact, then 𝑇 is continuous.

The rank of an operator is the dimension of its range. It is well-known that every finite rank
continuous linear operator acting between Banach spaces is compact.

Example 3. Let { 𝑓 𝑗} and {ℎ𝑖} be sequences of functions in 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞 with 𝑝, 𝑞 ≥ 1 and
1
𝑝 +

1
𝑞 > 1. Suppose 𝐾 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) is defined by

(𝐾𝜑)(𝑥) =
∫ 𝑏

𝑎

©«
𝑛∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

ª®¬𝜑(𝑡)𝑑𝑔(𝑡).
Then

(𝐾𝜑) (𝑥) =
∫ 𝑏

𝑎

©«
𝑛∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

ª®¬𝜑(𝑡)𝑑𝑔(𝑡) =
𝑛∑
𝑗=1
ℎ 𝑗 (𝑥)

∫ 𝑏

𝑎
𝜑 𝑓 𝑗𝑑𝑔 =

𝑛∑
𝑗=1
ℎ 𝑗 (𝑥)𝛼 𝑗 ,

where 𝛼 𝑗 =
∫ 𝑏
𝑎
𝜑 𝑓 𝑗𝑑𝑔 ∈ R. Thus 𝐾 is a linear operator of finite rank. Therefore 𝐾 is compact.

Here for easy reference, we shall prove that 𝐾 is compact. Let {𝜑𝑘}∞𝑘=1 be a bounded sequence in
𝐵𝑉𝑝. Hence {∥𝜑𝑘 ∥𝑉𝑝 } is bounded in R. Then, by Theorem 3 and Corollary 2, we have

|𝛼 𝑗 ,𝑘 | =
����∫ 𝑏

𝑎
𝜑𝑘 𝑓 𝑗𝑑𝑔

���� ≤ ∥𝜑𝑘 𝑓 𝑗 ∥∞𝑉𝑞 (𝑔) +3
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
𝑉𝑝 (𝜑𝑘 𝑓 𝑗)𝑉𝑞 (𝑔)

≤ ∥𝜑𝑘 ∥∞∥ 𝑓 𝑗 ∥∞𝑉𝑞 (𝑔) +3
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
∥ 𝑓 ∥𝑉𝑝 ∥𝜑𝑘 ∥𝑉𝑝𝑉𝑞 (𝑔),

i.e., {𝛼 𝑗 ,𝑘}∞𝑘=1 is bounded in R, for 𝑗 = 1,2, . . . , 𝑛. By the BolzanoWeierstrass theorem, there exists a
subsequence {𝛼 𝑗 ,𝑘𝑙 } of {𝛼 𝑗 ,𝑘}∞𝑘=1, converging in R, for 𝑗 = 1,2, . . . , 𝑛. Let 𝜖 > 0. There exists 𝑁 ∈ N
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such that for any 𝑠, 𝑡 ≥ 𝑁 , |𝛼 𝑗 ,𝑘𝑠 −𝛼 𝑗 ,𝑘𝑡 | < 𝜖 . Thus
∥𝐾𝜑𝑘𝑠 −𝐾𝜑𝑘𝑡 ∥𝑉𝑝 =𝑉𝑝 (𝐾𝜑𝑘𝑠 −𝐾𝜑𝑘𝑡 ) + ∥𝐾𝜑𝑘𝑠 −𝐾𝜑𝑘𝑡 ∥∞

=𝑉𝑝

( 𝑛∑
𝑗=1
ℎ 𝑗𝛼 𝑗 ,𝑘𝑠 −

𝑛∑
𝑗=1
ℎ 𝑗𝛼 𝑗 ,𝑘𝑡

)
+
 𝑛∑
𝑗=1
ℎ 𝑗𝛼 𝑗 ,𝑘𝑠 −

𝑛∑
𝑗=1
ℎ 𝑗𝛼 𝑗 ,𝑘𝑡


∞

≤
𝑛∑
𝑗=1

|𝛼 𝑗 ,𝑘𝑠 −𝛼 𝑗 ,𝑘𝑡 | 𝑉𝑝 (ℎ 𝑗) +
𝑛∑
𝑗=1

|𝛼 𝑗 ,𝑘𝑢 −𝛼 𝑗 ,𝑘𝑣 | ∥ℎ 𝑗 ∥∞

< 𝜖
𝑛∑
𝑗=1
𝑉𝑝 (ℎ 𝑗) + 𝜖

𝑛∑
𝑗=1

∥ℎ 𝑗 ∥∞.

Hence, {𝐾𝜑𝑘𝑙 } is a Cauchy sequence in 𝐵𝑉𝑝 under ∥ · ∥𝑉𝑝 . Therefore, there exists 𝜓 ∈ 𝐵𝑉𝑝 such
that ∥𝐾𝜑𝑘𝑙 −𝜓∥𝑉𝑝 → 0 as 𝑘𝑙 → ∞. Hence 𝐾 is compact. Therefore, 𝐾 is ∥ · ∥𝑉𝑝 -continuous. We
remark that we can use the same idea to prove that 𝐾 is ∥ · ∥𝑉𝑝 -continuous without using the fact that
compactness implies continuity.

Next we shall prove a result for a countably infinite dimensional rank.

Lemma 1. Let { 𝑓 𝑗} be sequence of functions in 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞 with 𝑝, 𝑞 ≥ 1 and 1
𝑝 +

1
𝑞 > 1. Suppose∑∞

𝑗=1 ∥ 𝑓 𝑗 ∥𝑉𝑝 <∞ and {ℎ 𝑗} a sequence of functions such that, for each 𝑥 ∈ [𝑎, 𝑏], |ℎ 𝑗 (𝑥) | ≤ 𝐴(𝑥) <∞,
for all 𝑗 and

∑∞
𝑗=1 ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡) exists for any 𝑥, 𝑡 ∈ [𝑎, 𝑏]. Then, for each 𝑥 ∈ [𝑎, 𝑏], ∑∞

𝑗=1 ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡) ∈
𝐵𝑉𝑝 and for each 𝜑 ∈ 𝐵𝑉𝑝,∫ 𝑏

𝑎

( ∞∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

)
𝜑(𝑡)𝑑𝑔(𝑡) =

∞∑
𝑗=1
ℎ 𝑗 (𝑥)

∫ 𝑏

𝑎
𝑓 𝑗 (𝑡)𝜑(𝑡)𝑑𝑔(𝑡).

Proof. Let 𝑚,𝑛 ∈ N be fixed. For any fixed 𝑥, we have

𝑉𝑝

( 𝑛∑
𝑗=𝑚

ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)
)
≤

𝑛∑
𝑗=𝑚

|ℎ 𝑗 (𝑥) |𝑉𝑝
(
𝑓 𝑗 (𝑡)

)
≤ 𝐴(𝑥)

𝑛∑
𝑗=𝑚

𝑉𝑝 ( 𝑓 𝑗).

Then

𝑉𝑝

( ∞∑
𝑗=𝑚

ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)
)
=𝑉𝑝

(
lim
𝑛→∞

𝑛∑
𝑗=𝑚

ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)
)

≤ 𝐴(𝑥) lim
𝑛→∞

𝑛∑
𝑗=𝑚

𝑉 ( 𝑓 𝑗) = 𝐴(𝑥)
∞∑
𝑗=𝑚

𝑉𝑝 ( 𝑓 𝑗) ≤ 𝐴(𝑥)
∞∑
𝑗=𝑚

∥ 𝑓 𝑗 ∥𝑉𝑝 .

Thus 𝑉𝑝
(∑∞

𝑗=𝑚 ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)
)
→ 0 as 𝑚→∞. Hence, for each 𝑥 ∈ [𝑎, 𝑏],

𝑉𝑝

( ∞∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

)
<∞.

Therefore
∑∞
𝑗=1 ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡) ∈ 𝐵𝑉𝑝, for each 𝑥 ∈ [𝑎, 𝑏]. We remark that this result, in fact, is a

consequence of the completeness of 𝐵𝑉𝑝.
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Notice that, by Theorem 3 and Corollary 2,�����∫ 𝑏

𝑎

( ∞∑
𝑗=𝑛+1

ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)
)
𝜑(𝑡)𝑑𝑔(𝑡)

�����
≤

 ∞∑
𝑗=𝑛+1

ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)𝜑(𝑡)

∞
𝑉𝑞 (𝑔) +3

{
1+ 𝜁 ( 1

𝑝1
+ 1
𝑞
)
}
𝑉𝑝

( ∞∑
𝑗=𝑛+1

ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)𝜑(𝑡)
)
𝑉𝑞 (𝑔)

≤ ∥𝜑∥∞
 ∞∑
𝑗=𝑛+1

ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

∞
𝑉𝑞 (𝑔) +3

{
1+ 𝜁 ( 1

𝑝1
+ 1
𝑞
)
}
∥𝜑(𝑡)∥𝑉𝑝

 ∞∑
𝑗=𝑛+1

ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

𝑉𝑝

𝑉𝑞 (𝑔).

Hence
���∫ 𝑏
𝑎
(∑∞

𝑗=𝑛+1 ℎ 𝑗 (𝑥)𝑔 𝑗 (𝑡))𝜑(𝑡) 𝑑𝑡
��� → 0 as 𝑛→∞. Observe that∫ 𝑏

𝑎

( ∞∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

)
𝜑(𝑡)𝑑𝑔(𝑡) −

𝑛∑
𝑗=1

∫ 𝑏

𝑎
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)𝜑(𝑡)𝑑𝑔(𝑡) =

∫ 𝑏

𝑎

( ∞∑
𝑗=𝑛+1

ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)
)
𝜑(𝑡)𝑑𝑔(𝑡).

So

lim
𝑛→∞

∫ 𝑏

𝑎

( 𝑛∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

)
𝜑(𝑡)𝑑𝑔(𝑡) =

∫ 𝑏

𝑎

( ∞∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

)
𝜑(𝑡)𝑑𝑔(𝑡).

�

The following lemma is proved by Abel’s transformation, see [1, Ch.2, p.365], which is crucial in
this paper.

Lemma 2. Let {𝑎 𝑗} be a sequence in a normed spaces 𝑆 with norm ∥ · ∥𝑆 and {𝑏 𝑗} a real-valued
sequence such that

∑∞
𝑗=1 𝑎 𝑗 and

∑∞
𝑗=1 |𝑏 𝑗+1− 𝑏 𝑗 | exist. Then lim 𝑗→∞ 𝑏 𝑗 ,

∑∞
𝑗=1 𝑎 𝑗𝑏 𝑗 exist and, for each

𝑚 = 1,2, . . .,

(2)
 ∞∑
𝑗=𝑚

𝑎 𝑗𝑏 𝑗


𝑆

≤ 2𝐴
∞∑
𝑗=𝑚

|𝑏 𝑗+1 − 𝑏 𝑗 | +
 ∞∑
𝑘=𝑚

𝑎𝑘


𝑆

|𝑏 |,

where 𝐴 = sup𝑛 ∥
∑𝑛
𝑗=1 𝑎 𝑗 ∥𝑆 and 𝑏 = lim 𝑗→∞ 𝑏 𝑗 .

Lemma 3. Let { 𝑓 𝑗} and {ℎ 𝑗} be sequences of functions in 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞 with 𝑝, 𝑞 ≥ 1 and
1
𝑝 +

1
𝑞 > 1. Suppose that

∑∞
𝑗=1 ∥ 𝑓 𝑗 ∥𝑉𝑝 <∞ and for each 𝑥 ∈ [𝑎, 𝑏], ∑∞

𝑗=1 ℎ 𝑗 (𝑥) exists.

(i) Then, for each 𝑥, there exists 0< 𝐴(𝑥) <∞ such that |ℎ 𝑗 (𝑥) | ≤ 𝐴(𝑥) for each 𝑗 and
∑∞
𝑗=1 ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

exists for any 𝑥, 𝑡 ∈ [𝑎, 𝑏].
(ii) Let 𝜑 ∈ 𝐵𝑉𝑝 and 𝛼 𝑗 =

∫ 𝑏
𝑎
𝑓 𝑗 (𝑡)𝜑(𝑡)𝑑𝑔(𝑡). Then

∑∞
𝑗=1 |𝛼 𝑗+1 −𝛼 𝑗 | <∞ and

∑∞
𝑗=1 ℎ 𝑗𝛼 𝑗 ∈ 𝐵𝑉𝑝.

Proof. (i) By given condition, for each 𝑥,
∑∞
𝑗=1 ℎ 𝑗 (𝑥) exists. Hence there exists 0 < 𝐴(𝑥) < ∞ such

that |ℎ 𝑗 (𝑥) | ≤ 𝐴(𝑥) for each 𝑗 . Apply Lemma 2 to two real-valued sequences with 𝑎 𝑗 = ℎ 𝑗 (𝑥) and
𝑏 𝑗 = 𝑓 𝑗 (𝑡) we have

∑∞
𝑗=1 ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡) exists for any 𝑥, 𝑡 ∈ [𝑎, 𝑏].
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(ii) First, by Theorem 3 and Corollary 2, we have

|𝛼 𝑗+1 −𝛼 𝑗 | =
����∫ 𝑏

𝑎
( 𝑓 𝑗+1(𝑡) − 𝑓 𝑗 (𝑡))𝜑(𝑡)𝑑𝑔(𝑡)

����
≤ ∥𝜑∥∞∥ 𝑓 𝑗+1 − 𝑓 𝑗 ∥∞𝑉𝑞 (𝑔) +3

{
1+ 𝜁 ( 1

𝑝1
+ 1
𝑞
)
}
∥ 𝑓 𝑗+1 − 𝑓 𝑗 ∥𝑉𝑝 ∥𝜑∥𝑉𝑝𝑉𝑞 (𝑔).

Hence
∑∞
𝑗=1 |𝛼 𝑗+1 −𝛼 𝑗 | <∞.

For each 𝑥 ∈ [𝑎, 𝑏], apply Lemma 2 to two real-valued sequences, 𝑎 𝑗 = ℎ 𝑗 (𝑥) and 𝑏 𝑗 = 𝛼 𝑗 , we have∑∞
𝑗=1 ℎ 𝑗 (𝑥)𝛼 𝑗 exists.
Now apply Lemma 2 to a real-valued sequence {𝛼 𝑗} and a sequence {ℎ 𝑗} in the normed space

with norm ∥ · ∥𝑉𝑝 , we have
∑∞
𝑗=1 ℎ 𝑗𝛼 𝑗 exists under norm ∥ · ∥𝑉𝑝 . Thus

{∑𝑛
𝑗=1 ℎ 𝑗𝛼 𝑗

}
is Cauchy under

∥ · ∥𝑉𝑝 . Therefore, there exists 𝜓 ∈ 𝐵𝑉𝑝 such that
∑𝑛

𝑗=1 ℎ 𝑗𝛼 𝑗 −𝜓

𝑉𝑝

→ 0 as 𝑛→ ∞. Therefore∑∞
𝑗=1 ℎ 𝑗𝛼 𝑗 ∈ 𝐵𝑉𝑝. �

Theorem 7. Let { 𝑓 𝑗} and {ℎ 𝑗} be sequences of functions in 𝐵𝑉𝑝 such that
∑∞
𝑗=1 ∥ 𝑓 𝑗 ∥𝑉𝑝 <∞, for each

𝑥 ∈ [𝑎, 𝑏], ∑∞
𝑗=1 ℎ 𝑗 (𝑥) exists and 𝑔 ∈ 𝐵𝑉𝑞 with 𝑝, 𝑞 ≥ 1 and 1

𝑝 +
1
𝑞 > 1. Let 𝐾,𝐾𝑛 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) →

(𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) be linear operators defined by

(𝐾𝑛𝜑) (𝑥) =
∫ 𝑏

𝑎

©«
𝑛∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

ª®¬𝜑(𝑡)𝑑𝑔(𝑡).
and

(𝐾𝜑)(𝑥) =
∫ 𝑏

𝑎

©«
∞∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

ª®¬𝜑(𝑡)𝑑𝑔(𝑡).
Then ∥𝐾𝑛−𝐾 ∥ → 0 as 𝑛→∞. Furthermore 𝐾 is continuous and compact.

Proof. By Lemmas 1 and 3 (i), for each 𝑥, 𝑡 ∈ [𝑎, 𝑏], ∑∞
𝑗=1 ℎ 𝑗 (𝑥)𝑔 𝑗 (𝑡) exists and

(𝐾𝜑) (𝑥) =
∫ 𝑏

𝑎

( ∞∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

)
𝜑(𝑡)𝑑𝑔(𝑡) =

∞∑
𝑗=1
ℎ 𝑗 (𝑥)

∫ 𝑏

𝑎
𝜑 𝑓 𝑗𝑑𝑔 =

∞∑
𝑗=1
ℎ 𝑗 (𝑥)𝛼 𝑗 ,

where 𝛼 𝑗 =
∫ 𝑏
𝑎
𝜑(𝑡) 𝑓 𝑗 (𝑡)𝑑𝑔(𝑡). Thus (𝐾 −𝐾𝑛)𝜑(𝑥) =

∑∞
𝑗=𝑛+1 ℎ 𝑗 (𝑥)𝛼 𝑗 .

Hence, ∥(𝐾 −𝐾𝑛)𝜑∥𝑉𝑝 = ∥∑∞
𝑗=𝑛+1 ℎ 𝑗𝛼 𝑗 ∥𝑉𝑝 . By Lemma 3 (ii),

∥(𝐾 −𝐾𝑛)(𝜑)∥𝑉𝑝 → 0 as 𝑛→∞.
By the Banach-Steinhaus theorem (Theorem 5), 𝐾 is continuous. Now, we shall prove that ∥𝐾𝑛−𝐾 ∥ →
0 as 𝑛→∞. Recall that

∑∞
𝑗=1 |𝛼 𝑗+1 −𝛼 𝑗 | < ∞. Let 𝛼 = lim 𝑗→∞𝛼 𝑗 . Apply Lemma 2 to {𝑎 𝑗}, where

𝑎 𝑗 = ℎ 𝑗 with norm ∥ · ∥𝑉𝑝 , and 𝑏 𝑗 = 𝛼 𝑗 , use inequality (2), we have

∥(𝐾 −𝐾𝑛)𝜑∥𝑉𝑝 =

 ∞∑
𝑗=𝑛+1

ℎ 𝑗𝛼 𝑗


𝑉𝑝

≤ 2sup
𝑗

 𝑗∑
𝑘=1

ℎ𝑘


𝑉𝑝

∞∑
𝑗=𝑛+1

|𝛼 𝑗 −𝛼 𝑗+1 | +
 ∞∑
𝑘=𝑛+1

ℎ𝑘


𝑉𝑝

|𝛼 |.
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COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE 𝐵𝑉𝑝 SPACE 9

Now we shall estimate
∑∞
𝑗=𝑛+1 |𝛼 𝑗+1−𝛼 𝑗 | and |𝛼 | in the above inequality. Since ∥𝜑∥𝑉𝑝 =𝑉𝑝 (𝜑) + ∥𝜑∥∞,

we have ∥𝜑∥∞ ≤ ∥𝜑∥𝑉𝑝 and 𝑉𝑝 (𝜑) ≤ ∥𝜑∥𝑉𝑝 . Then, by Theorem 3,

|𝛼 𝑗+1 −𝛼 𝑗 | =
����∫ 𝑏

𝑎
( 𝑓 𝑗+1(𝑡) − 𝑓 𝑗 (𝑡))𝜑(𝑡)𝑑𝑔(𝑡)

����
≤ ∥𝜑∥∞∥ 𝑓 𝑗+1 − 𝑓 𝑗 ∥∞𝑉𝑞 (𝑔) +3

{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
∥ 𝑓 𝑗+1 − 𝑓 𝑗 ∥𝑉𝑝 ∥𝜑∥𝑉𝑝𝑉𝑞 (𝑔)

≤ ∥𝜑∥𝑉𝑝 ∥ 𝑓 𝑗+1 − 𝑓 𝑗 ∥𝑉𝑝𝑉𝑞 (𝑔) +3
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
∥ 𝑓 𝑗+1 − 𝑓 𝑗 ∥𝑉𝑝 ∥𝜑∥𝑉𝑝𝑉𝑞 (𝑔)

≤ 4
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
∥𝜑∥𝑉𝑝 ∥ 𝑓 𝑗+1 − 𝑓 𝑗 ∥𝑉𝑝𝑉𝑞 (𝑔)

Note that 𝛼 = lim 𝑗→∞𝛼 𝑗 and 𝛼 𝑗 =
∫ 𝑏
𝑎
𝜑(𝑡) 𝑓 𝑗 (𝑡)𝑑𝑔(𝑡). By Theorem 3 and Corollary 2,

|𝛼 | = lim
𝑗→∞

|𝛼 𝑗 | = lim
𝑗→∞

����∫ 𝑏

𝑎
𝜑(𝑡) 𝑓 𝑗 (𝑡)𝑑𝑔(𝑡)

����
≤ ∥𝜑∥∞ lim

𝑗→∞
∥ 𝑓 𝑗 ∥∞𝑉𝑞 (𝑔) +3

{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
∥𝜑∥𝑉𝑝 lim

𝑗→∞
∥ 𝑓 𝑗 ∥𝑉𝑝𝑉𝑞 (𝑔)

≤ ∥𝜑∥∞
∞∑
𝑗=1

∥ 𝑓 𝑗 ∥∞𝑉𝑞 (𝑔) +3
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
∥𝜑∥𝑉𝑝

∞∑
𝑗=1

∥ 𝑓 𝑗 ∥𝑉𝑝𝑉𝑞 (𝑔)

≤ ∥𝜑∥𝑉𝑝

∞∑
𝑗=1

∥ 𝑓 𝑗 ∥𝑉𝑝𝑉𝑞 (𝑔) +3
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
∥𝜑∥𝑉𝑝

∞∑
𝑗=1

∥ 𝑓 𝑗 ∥𝑉𝑝𝑉𝑞 (𝑔)

≤ 4
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
∥𝜑∥𝑉𝑝

∞∑
𝑗=1

∥ 𝑓 𝑗 ∥𝑉𝑝𝑉𝑞 (𝑔).

Thus

∥(𝐾 −𝐾𝑛)∥ = sup
𝜑

∥(𝐾 −𝐾𝑛)𝜑∥𝑉𝑝

∥𝜑∥𝑉𝑝

≤ 2sup
𝑗

 𝑗∑
𝑘=1

ℎ𝑘


𝑉𝑝

∞∑
𝑗=𝑛+1

4
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
}
∥ 𝑓 𝑗+1 − 𝑓 𝑗 ∥𝑉𝑝𝑉𝑞 (𝑔)

+
 ∞∑
𝑘=𝑛+1

ℎ𝑘


𝑉𝑝

4
{
1+ 𝜁 ( 1

𝑝
+ 1
𝑞
)
} ∞∑
𝑗=1

∥ 𝑓 𝑗 ∥𝑉𝑝𝑉𝑞 (𝑔).

Hence ∥𝐾𝑛−𝐾 ∥ → 0 as 𝑛→∞. Note that each 𝐾𝑛 is a linear operator of finite rank. Hence each 𝐾𝑛 is
compact. Thus 𝐾 is compact, i.e., for any bounded sequence {𝜑𝑛} in 𝐵𝑉𝑝, there exists a subsequence
{𝜑𝑛𝑘 } such that {𝐾𝜑𝑛𝑘 } is convergent in 𝐵𝑉𝑝 under ∥ · ∥𝑉𝑝 . �
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COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE 𝐵𝑉𝑝 SPACE 10

Now we shall consider nonlinear operators. Let ℎ(𝑡, 𝑠) be a Carathéodory function from [𝑎, 𝑏] ×R
to R, i.e., the function ℎ(𝑡, ·) is continuous for all 𝑡 ∈ [𝑎, 𝑏] and the function ℎ(·, 𝑠) is measurable for
every 𝑠 ∈ R, [6, p. 349, Chapter 5]

Let 𝜑 be a function defined on [𝑎, 𝑏] and 𝐻𝜑 a function defined on [𝑎, 𝑏] and (𝐻𝜑)(𝑡) = ℎ(𝑡, 𝜑(𝑡)).
The operator𝐻 is called a Nemytskii operator. In the following, we assume that the following Lipschitz
condition holds for the function ℎ(𝑡, 𝑠), i.e., there exists a positive numbers 𝜅 such that

(3) |ℎ(𝑡1, 𝑠1) − ℎ(𝑡2, 𝑠2) | ≤ 𝜅(|𝑡1 − 𝑡2 | + |𝑠1 − 𝑠2 |)

for all 𝑡1, 𝑡2 ∈ [𝑎, 𝑏] and all 𝑠1, 𝑠2 ∈ R.

Lemma 4. Let 𝐻 be a Nemytskii operator defined as above and 𝜑 ∈ 𝐵𝑉𝑝. Then
(i) 𝑉𝑝 (𝐻𝜑) ≤ 2𝜅(|𝑏− 𝑎 | +𝑉𝑝 (𝜑));
(ii) ∥𝐻𝜑∥∞ ≤ 𝜅( |𝑏−𝑎 | +2∥𝜑∥∞+ |ℎ(𝑡0, 𝑀𝜑) |), where 𝑡0 ∈ [𝑎, 𝑏] is fixed and ℎ(𝑡0, 𝑀𝜑) = sup{ℎ(𝑡0, 𝑠) :

−∥𝜑∥∞ ≤ 𝑠 ≤ ∥𝜑∥∞};
(iii) the operator𝐻 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) and𝐻 maps a bounded sequence in (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 )

to a bounded sequence in (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ).

Proof. By inequality (3), we get

|ℎ(𝑡1, 𝜑(𝑡1)) − ℎ(𝑡2, 𝜑(𝑡2)) |𝑝 ≤ 2𝑝𝜅𝑝 ( |𝑡1 − 𝑡2 |𝑝 + |𝜑(𝑡1) −𝜑(𝑡2) |𝑝) .

Hence
𝑉 𝑝𝑝 (ℎ(𝑡, 𝜑(𝑡))) ≤ 2𝑝𝜅𝑝

(
𝑉 𝑝𝑝 (𝑡) +𝑉 𝑝𝑝 (𝜑(𝑡))

)
≤ 2𝑝𝜅𝑝

(
𝑉 𝑝1 (𝑡) +𝑉 𝑝𝑝 (𝜑(𝑡))

)
= 2𝑝𝜅𝑝

(
|𝑏− 𝑎 |𝑝 +𝑉 𝑝𝑝 (𝜑(𝑡))

)
.

Thus, we have

𝑉𝑝 (ℎ(𝑡, 𝜑(𝑡))) ≤
(
2𝑝𝜅𝑝

(
|𝑏− 𝑎 |𝑝 +𝑉 𝑝𝑝 (𝜑(𝑡))

) ) 1
𝑝

< 2𝜅
(
( |𝑏− 𝑎 |𝑝)

1
𝑝 +

(
𝑉 𝑝𝑝 (𝜑(𝑡))

) 1
𝑝

)
= 2𝜅

(
|𝑏− 𝑎 | +𝑉𝑝 (𝜑(𝑡))

)
.

Therefore (i) holds. Thus (𝐻𝜑) (𝑡) = ℎ(𝑡, 𝜑(𝑡)) is in 𝐵𝑉𝑝 if 𝜑 ∈ 𝐵𝑉𝑝. Furthermore {𝑉𝑝 (𝐻𝜑𝑛)} is
bounded if {𝑉𝑝 (𝜑𝑛)} is bounded.

On the other hand,

|ℎ(𝑡, 𝜑(𝑡)) | ≤ 𝜅(|𝑡 − 𝑡0 | + |𝜑(𝑡) −𝜑(𝑡0) |) + |ℎ(𝑡0, 𝜑(𝑡0)) |

Suppose ∥𝜑∥∞ ≤ 𝛼, i.e., −𝛼 ≤ 𝜑(𝑡) ≤ 𝛼 and all 𝑡 ∈ [𝑎, 𝑏]. Recall that for a fixed 𝑡0, ℎ(𝑡0, ·) is continuous
on [−𝛼,𝛼]. Thus, there exists 𝑀𝜑 ∈ [−𝛼,𝛼] such that |ℎ(𝑡0, 𝜑(𝑡0)) | ≤ |ℎ(𝑡0, 𝑀𝜑) |. Hence,

(4) ∥𝐻𝜑∥∞ ≤ 𝜅( |𝑏− 𝑎 | +2∥𝜑∥∞) + |ℎ(𝑡0, 𝑀𝜑) |

Thus (ii) holds. Therefore, {∥𝐻𝜑𝑛∥∞} is bounded if {∥𝜑𝑛∥∞} is bounded. Consequently, (iii)
holds. �
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COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE 𝐵𝑉𝑝 SPACE 11

Let 𝑘 (𝑥, 𝑡) =∑∞
𝑗=1 ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡) and 𝐾 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) be defined as in the Theorem

7, i.e.,

(𝐾𝜑) (𝑥) =
∫ 𝑏

𝑎
𝑘 (𝑥, 𝑡)𝜑(𝑡)𝑑𝑔(𝑡) =

∫ 𝑏

𝑎

©«
∞∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

ª®¬𝜑(𝑡)𝑑𝑔(𝑡).
Then the composite operator 𝐾𝐻 maps (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) space to (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) space. Let 𝜑 ∈ 𝐵𝑉𝑝,
Then (𝐾𝐻)(𝜑) ∈ 𝐵𝑉𝑝 and for each 𝑥 ∈ [𝑎, 𝑏]

((𝐾𝐻)(𝜑)) (𝑥) = (𝐾 (𝐻𝜑)) (𝑥) =
∫ 𝑏

𝑎
𝑘 (𝑥, 𝑡)ℎ(𝑡, 𝜑(𝑡)) 𝑑𝑡.

The composite operator 𝐾𝐻 is called a Hammerstein operator.

Corollary 3. The nonlinear Hammerstein operator 𝐾𝐻 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) given above
is compact.

Proof. By Lemma 4 (iii), the Nemytskii operator 𝐻 maps every bounded sequence under ∥ · ∥𝑉𝑝 to a
bounded sequence under ∥ · ∥𝑉𝑝 . By Theorem 7, 𝐾 is compact. Therefore the composite Hammerstein
operator 𝐾𝐻 from (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) to (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) is compact. �

4. Integral equations

The Fredholm-Stieltjes integral equation of the second kind is an equation of the form

(5) 𝜑(𝑥) = 𝜓(𝑥) +𝜆
∫ 𝑏

𝑎
𝑘 (𝑥, 𝑡)𝜑(𝑡)𝑑𝑔(𝑡),

where 𝜓 : [𝑎, 𝑏] → R and 𝑘 : [𝑎, 𝑏] × [𝑎, 𝑏] → R. The function 𝑘 is known as the integral kernel.
In this section, let 𝜓, 𝜑 ∈ 𝐵𝑉𝑝, we first discuss the case when the integral kernel is separable, i.e.,

𝑘 (𝑥, 𝑡) = ℎ(𝑥) 𝑓 (𝑡). By the standard method we can show that the integral equation (5) has a unique
solution. We shall write it down for easy reference. Suppose that ℎ, 𝑓 ∈ 𝐵𝑉𝑝 and 𝑔 ∈ 𝐵𝑉𝑞.

The equation (5) becomes

𝜑(𝑥) = 𝜓(𝑥) +𝜆
∫ 𝑏

𝑎
ℎ(𝑥) 𝑓 (𝑡)𝜑(𝑡)𝑑𝑔(𝑡)

= 𝜓(𝑥) +𝜆ℎ(𝑥)𝛼,
(6)

where 𝛼 =
∫ 𝑏
𝑎
𝑓 (𝑡)𝜑(𝑡)𝑑𝑔(𝑡). Multiply 𝑓 (𝑥) the both side of the above equality, then integrate with

respect to 𝑔(𝑥), we get∫ 𝑏

𝑎
𝜑(𝑥) 𝑓 (𝑥)𝑑𝑔(𝑥) =

∫ 𝑏

𝑎
𝜓(𝑥) 𝑓 (𝑥)𝑑𝑔(𝑥) +𝜆𝛼

∫ 𝑏

𝑎
ℎ(𝑥) 𝑓 (𝑥)𝑑𝑔(𝑥),

i.e.,

𝛼 =
∫ 𝑏

𝑎
𝜓(𝑥) 𝑓 (𝑥)𝑑𝑔(𝑥) +𝜆𝛼

∫ 𝑏

𝑎
ℎ(𝑥) 𝑓 (𝑥)𝑑𝑔(𝑥).

Submitted to Journal of Integral Equations and Applications - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

31 Jan 2024 18:25:26 PST
230601-Boonpogkrong Version 2 - Submitted to J. Integr. Eq. Appl.



COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE 𝐵𝑉𝑝 SPACE 12

Note that by Theorems 3 and 6,
∫ 𝑏
𝑎
𝜓(𝑥) 𝑓 (𝑥)𝑑𝑔(𝑥) and

∫ 𝑏
𝑎
ℎ(𝑥) 𝑓 (𝑥)𝑑𝑔(𝑥) exist. If𝜆

∫ 𝑏
𝑎
ℎ(𝑥) 𝑓 (𝑥)𝑑𝑔(𝑥) ≠

1, then we get

𝛼 =

∫ 𝑏
𝑎
𝜓(𝑥) 𝑓 (𝑥)𝑑𝑔(𝑥)

1−𝜆
∫ 𝑏
𝑎
ℎ(𝑥) 𝑓 (𝑥)𝑑𝑔(𝑥)

.

Hence, from Equation (6),

𝜑(𝑥) = 𝜓(𝑥) +𝜆ℎ(𝑥)𝛼 = 𝜓(𝑥) +𝜆ℎ(𝑥)
∫ 𝑏
𝑎
𝜓(𝑡) 𝑓 (𝑡)𝑑𝑔(𝑡)

1−𝜆
∫ 𝑏
𝑎
ℎ(𝑡) 𝑓 (𝑡)𝑑𝑔(𝑡)

.

is the unique solution of a Fredholm-Stieltjes integral equation with separable integral kernel whenever
𝜆
∫ 𝑏
𝑎
ℎ(𝑡) 𝑓 (𝑡)𝑑𝑔(𝑡) ≠ 1.

For the case when 𝜆
∫ 𝑏
𝑎
ℎ(𝑡) 𝑓 (𝑡)𝑑𝑔(𝑡) = 1, the equation has no solution, if

∫ 𝑏
𝑎
𝜓(𝑡) 𝑓 (𝑡)𝑑𝑔(𝑡) ≠ 0.

Let ℎ 𝑗 , 𝑓 𝑗 ∈ 𝐵𝑉𝑝, 𝑔 ∈ 𝐵𝑉𝑞, for 𝑗 = 1,2, . . . , 𝑛, and

𝑘 (𝑥, 𝑡) =
𝑛∑
𝑗=1
ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡)

for 𝑥, 𝑡 ∈ [𝑎, 𝑏]. Then the corresponding Fredholm integral equation has properties analogous to the
above case.

Linear Fredholm equations and the Kurzweil-Henstock integral have been addressed in [5].
Let us now return to the case in which the kernel 𝑘 (𝑥, 𝑡) = ∑∞

𝑗=1 ℎ 𝑗 (𝑥) 𝑓 𝑗 (𝑡) and the operator 𝐾 are

the same as in Theorem 7. Let 𝜓 ∈ 𝐵𝑉𝑝 and 𝑇𝜑 = 𝜓+𝜆𝐾𝜑 for 𝜑 ∈ 𝐵𝑉𝑝. Let ∥𝐾 ∥ = sup ∥𝐾 𝜑 ∥𝑉𝑝

∥𝜑 ∥𝑉𝑝
, where

supremum is over all 𝜑 ∈ 𝐵𝑉𝑝.

Theorem 8. Suppose there exists 𝜇 > 0 such that ∥𝐾𝜑∥𝑉𝑝 ≤ 𝜇∥𝜑∥𝑉𝑝 for each 𝜑, i.e., ∥𝐾 ∥ ≤ 𝜇. For
any 𝜆 with 0 < 𝜆 < 1

𝜇 , there exists a unique fixed point 𝜙 ∈ 𝐵𝑉𝑝, i.e.,

𝜙(𝑥) = 𝜓(𝑥) +𝜆(𝐾𝜙) (𝑥) = 𝜓(𝑥) +𝜆
∫ 𝑏

𝑎
𝑘 (𝑥, 𝑡)𝜙(𝑡)𝑑𝑔(𝑡).

This solution 𝜙 is given by a convergent Neumann series 𝜙(𝑥) =∑∞
𝑖=1𝜆

𝑖𝐾 𝑖𝜓 and ∥𝜙∥𝑉𝑝 ≤ 1
1−𝜆𝜇 ∥𝜓∥𝑉𝑝 ,

where 𝐾1 = 𝐾 and 𝐾 𝑖𝜓 = 𝐾
(
𝐾 𝑖−1𝜓

)
, 𝑖 = 2,3,4, . . ..

Proof. The proof is standard. Let 𝜙0(𝑥) = 𝜓(𝑥), 𝜙𝑛 (𝑥) = 𝜓 +𝜆𝐾𝜙𝑛−1(𝑥), 𝑛 = 1,2, . . .. Then 𝜙𝑛+1(𝑥) =∑𝑛+1
𝑖=0 𝜆

𝑖𝐾 𝑖𝜙(𝑥), 𝑛 = 1,2, . . .. Since ∥𝐾 ∥ ≤ 𝜇, we have

∥𝐾 𝑖𝜓∥𝑉𝑝 = ∥𝐾𝐾 𝑖−1𝜓∥𝑉𝑝 ≤ 𝜇∥𝐾 𝑖−1𝜓∥𝑉𝑝 ≤ 𝜇𝑖 ∥𝜓∥𝑉𝑝 .

Thus, for any 𝑚,𝑛 ∈ N, we have

∥𝜙𝑛−𝜙𝑚∥𝑉𝑝 =

 𝑛∑
𝑖=𝑚+1

𝜆𝑖𝐾 𝑖𝜓


𝑉𝑝

≤
𝑛∑

𝑖=𝑚+1
𝜆𝑖

𝐾 𝑖𝜓
𝑉𝑝

=

(
𝑛∑

𝑖=𝑚+1
(𝜆𝜇)𝑖

)
∥𝜓∥𝑉𝑝

.

Since 0 < 𝜆𝜇 < 1 by our assumptions, the sequence {𝜙𝑛} is Cauchy under ∥ · ∥𝑉𝑝 . Hence lim𝑛→∞ 𝜙𝑛 =∑∞
𝑖=0𝜆

𝑖𝐾 𝑖𝜓 exists in 𝐵𝑉𝑝, if 0 < 𝜆 < 1
𝜇 .
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Let 𝜙(𝑥) = ∑∞
𝑖=0 𝜇

𝑖 (𝐾 𝑖𝜓)(𝑥). Then 𝜙(𝑥) = lim𝑛→∞ 𝜙𝑛 (𝑥). By Theorem 7, 𝐾 is ∥ · ∥𝑉𝑝 -continuous.
From the iteration equation, 𝜙𝑛 (𝑥) = 𝜓 +𝜆𝐾𝜙𝑛−1(𝑥) and the continuity of 𝐾 , we have

lim
𝑛→∞

𝜙𝑛 (𝑥) =𝜓 +𝜆 lim
𝑛→∞

𝐾𝜙𝑛−1(𝑥)

= 𝜓 +𝜆 lim
𝑛→∞

∫ 𝑏

𝑎
𝑘 (𝑥, 𝑡)𝜙𝑛−1(𝑡)𝑑𝑔(𝑡)

= 𝜓 +𝜆
∫ 𝑏

𝑎
𝑘 (𝑥, 𝑡)

(
lim
𝑛→∞

𝜙𝑛−1(𝑡)
)
𝑑𝑔(𝑡)

= 𝜓 +𝜆
∫ 𝑏

𝑎
𝑘 (𝑥, 𝑡)𝜙(𝑡)𝑑𝑔(𝑡).

Thus, if 0 < 𝜆 < 1
𝜇 , we can find 𝜙 ∈ 𝐵𝑉𝑝 such that 𝜙(𝑥) = 𝜓 +𝜆

∫ 𝑏
𝑎
𝑘 (𝑥, 𝑡)𝜙(𝑡)𝑑𝑔(𝑡).

Now we shall prove that the fixed point 𝜙 is unique. Suppose that there are two fixed points, namely
𝜙 and Φ. Then 𝜙 = 𝜓 +𝜆𝐾𝜙 and Φ = 𝜓 +𝜆𝐾Φ. Therefore 𝜙−Φ = 𝜆𝐾 (𝜙−Φ) and

∥𝜙−Φ∥𝑉𝑝 = 𝜆∥𝐾 (𝜙−Φ)∥𝑉𝑝 ≤ 𝜆∥𝐾 ∥∥(𝜙−Φ)∥𝑉𝑝 ≤ 𝜆𝜇∥(𝜙−Φ)∥𝑉𝑝 .

Hence (1−𝜆𝜇)∥𝜙−Φ∥𝑉𝑝 ≤ 0. Recall that 1−𝜆𝜇 > 0. It imply that ∥𝜙−Φ∥𝑉𝑝 = 0. Thus ∥𝜙−Φ∥𝑉𝑝 = 0.
Consequently 𝜙 = Φ. Therefore the fixed point 𝜙 is unique. �

Remark 1. We note that although 𝜇 is difficult to locate. However, according to Theorem 8, if 𝜆 is a
sufficiently small positive number, then a unique fixed point exists.

Theorem 9 (Tychonoff’s theorem). [9, Theorem A] Let C be a convex subset of a locally convex
topological vector space. If 𝑇 is a continuous operator which maps C into a compact subset of C, then
𝑇 has a fixed point in C.

Theorem 10. Let 𝑇𝜑 = 𝜓 +𝜆(𝐾𝐻)𝜑, where 𝐾𝐻 is given before Corollary 3. Assume that 𝜓 ∈ 𝐵𝑉𝑝,
3𝜅 |𝑏−𝑎 |+ |ℎ (𝑡0,𝑀2𝜓) |

∥𝜓 ∥𝑉𝑝
≤ 𝛽 and ∥𝐾 ∥ ≤ 𝜇, 0 < 𝜆 < 1

𝜇 (𝛽+4𝜅) . Then 𝑇 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) has a
fixed point.

Proof. By Lemma 4 (i) and (ii), we have

∥𝐻𝜑∥𝑉𝑝 =𝑉𝑝 (𝐻𝜑) + ∥𝐻𝜑∥∞ ≤ 3𝜅 |𝑏− 𝑎 | +2𝜅∥𝜑∥𝑉𝑝 + |ℎ(𝑡0, 𝑀𝜑) |.

Since 𝐾 is continuous, we have

∥𝐾𝐻𝜑∥𝑉𝑝 ≤ ∥𝐾 ∥∥𝐻𝜑∥𝑉𝑝 ≤ ∥𝐾 ∥
(
3𝜅 |𝑏− 𝑎 | +2𝜅∥𝜑∥𝑉𝑝 + |ℎ(𝑡0, 𝑀𝜑) |

)
.
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Let C = {𝜑 ∈ 𝐵𝑉𝑝 : ∥𝜑∥𝑉𝑝 ≤ 2∥𝜓∥𝑉𝑝 }. Then C is convex and bounded. For every 𝜑 ∈ C, we have

∥𝑇𝜑∥𝑉𝑝 ≤ 𝜆∥(𝐾𝐻)𝜑∥𝑉𝑝 + ∥𝜓∥𝑉𝑝

≤ 𝜆∥𝐾 ∥
(
3𝜅 |𝑏− 𝑎 | +2𝜅∥𝜑∥𝑉𝑝 + |ℎ(𝑡0, 𝑀𝜑) |

)
+ ∥𝜓∥𝑉𝑝

≤ 𝜆𝜇
(
3𝜅 |𝑏− 𝑎 | +4𝜅∥𝜓∥𝑉𝑝 + |ℎ(𝑡0, 𝑀2𝜓) |

)
+ ∥𝜓∥𝑉𝑝

= 𝜆𝜇∥𝜓∥𝑉𝑝

(3𝜅 |𝑏− 𝑎 | + |ℎ(𝑡0, 𝑀2𝜓) |
∥𝜓∥𝑉𝑝

+4𝜅
)
+ ∥𝜓∥𝑉𝑝

<
1

𝜇(𝛽+4𝜅) 𝜇∥𝜓∥𝑉𝑝 (𝛽+4𝜅) + ∥𝜓∥𝑉𝑝

= 2∥𝜓∥𝑉𝑝 .

Then 𝑇C ⊆ C. 𝑇 is compact since 𝐾𝐻 is compact. Thus 𝑇C is compact. Hence, by Tychonoff’s
theorem, 𝑇 has a fixed point in C. �

Remark 2. We note that although 1
𝜇 (𝛽+4𝜅) is difficult to locate. However, according to Theorem 10, if

𝜆 is a sufficiently small positive number, 𝑇 : (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) → (𝐵𝑉𝑝, ∥ · ∥𝑉𝑝 ) has a fixed point.
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