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COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE BV,, SPACE

VARAYU BOONPOGKRONG AND TUAN SENG CHEW

ABsTrACT. In this paper, compact operators and integral equations in terms of integral kernel in the
BV, space will be considered. The BV,, space is the space of all bounded p-variation on a compact
interval. The integral used in this paper is of Stieltjes-type. The integral is an integration with respect to
a function of bounded p-variation. A fractional Brownian motion in the stochastic integral is a processes
12 of bounded p-variation.

[ole~]o]o]s]e]m

0

11

'®  In this paper, let BV, be the space of all bounded p-variation defined on a compact interval [a, b].

' We shall consider compact operators K : BV, — BV,, where K are defined by
15

© b

" (ko)) = [ k(x0g0dg ).
17 a

1¢ Integral equations considered are of the form

19 =y +AKp.

20
.~ The integral / b f(t)dg(t) used here is the Kurzweil-Henstock-Young integral, which is a Stieltjes-type

22 1ntegral When f € BV, and g € BV,, where 1 + > 1 and p,q > 1, then the integral f f(t)dg (1)
23 exists, see [3,7, 12]. The kurzweil-Henstock approach is used to handle the integral, for the Kurzweil-
24 Henstock approach, see [8,11].

25

2% 1. Preliminaries

°"_In this section, we shall present some results proved by L.C.Young in 1936, see [7,12].

28
o, Definition 1. Let f: [a,b] — R and let 0 < p < co. Given a partition P = {[u;,v;]} of [a,b], let

30

1/p
3 Vp(f.P;la,b]) (Zwv) f(u)lp) :

32

CE The p-variation of f is defined by
al Vp(f: [a,b])=SgPVp(f,P; [a,b]).

35

SE We say that f is of bounded p-variation on [a,b] or f € BV, [a,b], if V,(f;[a,b]) < co. In this paper,
37 we always denote BV, [a,b] and V,(f;[a,b]) by BV,, and V,(f), respectively.

8 —

39

0 2020 Mathematics Subject Classification. 26A39, 26A42, 45B05.
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COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE BV,, SPACE 2

From Jensen’s inequality, we have

(S1se0-str)™ < (Liseo-swr)

1
2
3
4 whenever0 < p <q. If f € BV, and 0 < p < g, then V,,(f;[a,b]) <V, (f;l[a,b]) <oo,ie., f € BV,.
5 Hence, we have BV, C BV,.

6 If f € BVp, then f is bounded. Thus || f1|e exists. Let || flv, =V, (f) + | fllw. Itis well-known
7 that (BVp, || - |lv,) is a Banach space, if p > 1.

8
~, Theorem 1. [3, Theorem 2.2; 12, p. 256, (6.2)]Let f € BV, and g € BV, with p,q > 0 and % +$ > 1.
1o Then, for any partition P = {[t;,tis1] ?:1 of [a,b] and & =t; for somei=1,2,...,n+1,

11

Z [ (i) (8(tir1) —8(2:)) = f(£) (8(b) — g(a))

i=1

< {1+§(%+é)}Vp(f)Vq(g),

12

13

E where { (%4.%) - Z:Lo:ln—(llﬁé)‘

15

o Corollary 1. [3, Corollary 2.3; 12, p.257, (6.4)]Let f € BV, and g € BV, with p.q > 0 and
17 %'i‘é > 1. Then, for any twopartitiorIS, D = {[ti’ti+1]}?:1 and D’ = {[sj,Sj_'_l]}’}q:l Of [a’b]’ i any

18 &i € [titin1]n; € [5),57411, we have

o |0 T (et 2601 - (09 1) (eGss0 - s657)| < 2{ v S0 v

(L4l

22 where { (L +1)= E n(pta),
P a

2 n=1

2 A finite collection P = {I} of nonoverlapping closed subintervals of [a,b] is said to be a partition

2 of [a,b] if Usepl = [a,b]. Let & be a positive function on [a, b] and I be a closed subinterval of [a, b].
?° An interval point-pair (1,£) is said to be ¢-fine if £ € I € (£ —6(£),€+6(£)). A finite collection of
?’_interval-point pairs, D = {(1,&)}, is called a 6-fine division of [a, b] if each (I,£) is 6-fine and {/} is
?® a partition of [a, b].

?  Now we shall introduce Kurzweil-Henstock-Young integrals.

30
51 Definition 2. [3, Definition 1.2] Let f,g : [a,b] — R. Then f is said to be Kurzweil-Henstock-Young

5 integrable (or KHY -integrable) to real number A on [a,b] with respect to g if for every € > 0, there
33 exists a positive function 6 defined on [a,b] such that for every §-fine division D = {(1,£)} of [a,b],
34 We have

SE [S(f,6,D)—A| <e,

36 where S(f,6,D) = (D) f(&)g(l), g(I) =g(v)—g(u) and I = [u,v]. In this paper, the value A is
— b

37 denoted by /a fdg.

:% Theorem 2 (Existence Theorem). [3, Theorem 3.5] Let f € BV, and g € BV, with p,q > 1 and
— 1 +$ > 1, then f is KHY -integrable with respect to g.

40 P
‘E The following Theorem has been proved for the Young integral in [12, p. 266], we shall prove it for
42 the K'HY-integral. This theorem is crucial in this paper.
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COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE BV,, SPACE 3

Theorem 3. If f € BV,, and g € BV, with p,q > 1 and %+é > 1, then

/ " fde| <11V (o) +3{1 +{(%+é)}Vp(f)Vq(g)-

s Proof. Let € > 0 be given. By Theorem 2, there exists a positive function & such that for every §-fine
o division D = {([us, vi].&)} of [a.b],

M / fdg- ()Y FE (v - g < e

o By Theorem 1, Corollary 1 and inequality (1), we have

: / " fae] <]l sv) - gtan| / " fds~ 1(a) (g(5) - g(a)

: <AV +| [ g - ()Y FEN i) - 8(10)

- +|(D) Y £E (i) = (1) = Y £t (gt ~8 (1)

o | £ (@) - g1) - (@) (8(b) -5 (@)

< ||f||qu<g>+e+2{1+4<1§+é>}vp(f)vq<g>+{1 +§(é+é)}Vp(f)Vq(g)

21
22 Since € is arbitrary,
23

24

< ||f||qu<g)+3{1+§<%+$)}vp(f>vq(g).

/a " fdg

25

26 O
27 In this note, from now onwards, we always assume that p,q > 1.

28

29 2. Continuous linear operators in BV, spaces

30

st Anoperator T: (BVp, || -[lv,) = (BVy, |- |lv,) is said to be continuous if [| Ty, = T¢llv, — 0asn — oo
-2 whenever [, — lly, — 0as n — co.

ss  LetT:(BVp,|-llv,) = (BVy, |- Ilv,) be linear. Suppose T is continuous. Define

i ITellv,

35 ||T||:sup{ il :goeBVp}.

— lellv,

36
37 Thus ||T]| is a norm of T. Note that ITellv, < IT|lll¢llv, for all ¢, if T is continuous.

s Let B(BV,) be the space of all continuous operators from (BV,, | - [lv,) to (BV,,|l - llv,). Let
3o (BV),,)* be the space of all continuous linear functionals defined on BV),.

“ Theorem 4. B(BV,,) and (BV),)* are complete.

41

‘E Proof. The proof is standard, see [10, p.221, proposition 3]. O
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The Banach-Steinhaus theorem, the open mapping theorem, the bounded inverse theorem and the
closed graph theorem hold true for linear continuous operators from the BV, space to any Banach
spaces. We shall only state the Banach-Steinhaus theorem.

[ fr ]~

% Theorem 5 (Banach-Steinhaus). [10, P 232, Proposition 13 and Problem 26] For each n € N, let
. To: (BVp,|l - llv,) = (BVg, |l -llv,) be linear and continuous. If for each ¢ in BV, the sequence
— ATwp} convergesto avalue Tg, i.e., [|[Tap=Tellv, = 0asn— oo, thenT : BV, — BV, is a continuous
. linear operator.

°  We remark that the BV, can be replaced by any Banach spaces.
10

;; Theorem 6. Let f € BV, and g € BV,,. If q < p, then fg € BV, and

2 Vp(f8) < lIgllewVp (S) +1f 1oV (8)-

13
14 Proof. Let P = {[u,v]} be a partition of [a,b]. Since g € BV, and ¢q < p, g € BV,,. By Minkowski
15 inequality, we have

16 1/p 1/p

" (Zl(fg)(v)—(fg)(u)lp) = (Z|f<v>g(v>—f(u>g(u>|P)

18 P P

19 1/p

2 = (Z [F()8(v) = Fw)g(v) + f (g (v) —f(u)g(u)lp)

— P

21? 1/p 1/p
= < (Zlf(v)g(v)—f(u)g(v)V’) +(Z If(u)g(V)—f(u)g(u)l”)
— P P

24 1/p 1/p

25 S(legllé’olf(V)—f(u)l”) +(Z||fllfo|g(V)—g(u)|p)

26 P P

27 < llgllVp () + 1 £llecVp (2)-

2% Since the partition P is arbitrary, V,,(fg) < [|glleVp (f) + I flloVp(g) and fg € BV),. O

80 Notice that
31

22 N8lleoVp () +IflleVi(8) < MIgllv, Vo (F) + I llligllv,, = llgllv, (Vp () + 1 lleo) = L f1lv, g, -

% Hence we have
34

ss Corollary 2. Let f € BV, and g € BV,,. If g < p, then

36

* Vp(fe) < fllv,ligllv,-

37

'g Example 1. Let g € BV, f,, € BV, and ¢ € BV,,. By Theorem 6, ¢f, € BV,. Hence, by Theorem
% 2 fab ¢ fndg exists if % +$ > 1. Let Ty : (BVp, |l -llv,) — R be defined by T,p = fab ¢ fndg, where
% fn€BV, withp,q > 1and 1% +é > 1. ThenT,, is continuous. Suppose lim,,_, fa b @ fndg exists. Then,
‘E by Theorem 5, T : (BVp, || - |lv,) — R defined by T¢ = lim;, o /ab @ fndg is continuous.
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+ Example 2. Let {f;} and {h;} be sequences of functions in BV, and g € BV, withp,q > 1 and % +$ > 1.

b
2 Let Ty : (BVp, |- llv,) = (BVp, |l - llv,,) be defined by (T,p)(x) = X1, [ hj(x)e(r) f;(t)dg (1) =
3
P hj(x) /fgo(t)f,(t)dg(t). By Theorem 6, T, is well-defined. Then each T, : BV,, — BV, is a
~— linear operator of finite rank. Hence T, is continuous. Suppose {Tn¢} is || ||v,-convergent to T in
— BV, for each ¢ € BV),. Then, by the Banach-Steinhaus Theorem (Theorem 5), T : (BV, || -|lv,) —
— (BV), |- lv,) is continuous.

We shall discuss the compactness of T in the next section.

Operators in the BV, space have also been discussed in [4,5, 8].

! 3. Compact operators in the BV, space

12
13 A sequence {¢,} in (BVp,||-|lv, ) is said to be bounded if {¢, } is bounded under || -||v,,. Let C C BV,.
12 C is said to be compact if for any bounded sequence in C there exists a || - || v, -convergent subsequence.

15 Anoperator T : (BV,, || -1lv,) = (BVp, |- |lv,) is said to be compact if for any bounded sequence
16 {@n} in BV, there exists a subsequence {¢,, } such that {T'¢y, } is convergent in BV,.
17 Using subsequence argument, as in Banach spaces, if T : (BV,, || - llv,) = (BVp, Il - llv,) is linear

18 and compact, then 7 is continuous.
19 The rank of an operator is the dimension of its range. It is well-known that every finite rank
20 continuous linear operator acting between Banach spaces is compact.

21? Example 3. Let {f;} and {h;} be sequences of functions in BV, and g € BV, with p,q > 1 and
— Ly 151 Suppose K : (BV,,||- lv,) = (BVp,|l-llv,) is defined by

Zi P q

Zi bl n

= ko = [ | Y hi0s0 |ewdso.

al a \j=1

ZThen

2? bl n n b n

. ko = [ | Ym0 |ewdsn = Y00 [ efide=Y i
— a \7=1 Jj=1 a J=1

31

% \Where aj= fa b ¢fjdg € R. Thus K is a linear operator of finite rank. Therefore K is compact.

®  Here for easy reference, we shall prove that K is compact. Let {¢r}; ., be a bounded sequence in
ja BV,,. Hence {||¢k|lv,} is bounded in R. Then, by Theorem 3 and Corollary 2, we have

35

b
/ er fidg

36

< ||sokfj||oqu(g)+3{1 +§(ll)+é)}vp(90kfi)vq(8)

- )kl =

- 11

s < ||90k”oo||fj||oovq(g)+3{l+§(_+_)}”f”Vp”SDk”Vqu(g)’

40 p q

‘E ie, {aj i}y, is bounded in R, for j =1,2,...,n. By the BolzanoWeierstrass theorem, there exists a

42 subsequence {a; r, } of {a; r};,, converging inR, for j=1,2,....,n. Let € > 0. There exists N € N
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such that for any s,t > N, |aj i, — @ | < €. Thus
1Kok, =Kok, v, =Vp (Ko, —Kek,) +[|Kpk, — Kk, lloo

n n n n
=Vp ( Z hjajk, = Z hjaj,k,) + Z hjajk, = Z hjaj k,
j=1 J=1 j=1 j=1 e

n n
< Dl =ik | Vp(hp)+ ) e, =k, |1l
J=1 J=1

n n
<€) Vp(hy)+e > lIhjlleo.
] j=1 j=1

12 Hence, {Koy,} is a Cauchy sequence in BV, under || - llv,. Therefore, there exists Y € BV), such
13 that ||Keg, —¢|lv, — 0 as k; — oo. Hence K is compact. Therefore, K is || - ||lv,-continuous. We
14 remark that we can use the same idea to prove that K is || - ||v,, -continuous without using the fact that
15 compactness implies continuity.

[ole~]o|o]a]e]r]~

o

" Next we shall prove a result for a countably infinite dimensional rank.

17

18 Lemma 1. Let { f;} be sequence of functions in BV,, and g € BV, withp,q > 1 and + > 1. Suppose
19 Z _i I fillv, <ooand {h;} a sequence of functions such that, for each x € [a,b], |h (x)| <A(x) < oo,
Zifor all j and ZJZI hj(x)f;(t) exists for any x,t € [a,b]. Then, for each x € [a,b], Z;"Zl hj(x)fi(t) €
21 BV, and for each ¢ € BV),

22

ii /ab (ih_i(x)fj(t))go(t)dg(t) = ihj(x)‘/abjcj(t)So(t)dg(t)-

zz Proof. Let m,n € N be ﬁ;_ed. For any fixed x, we havje_

v,,(zn: hj(X)fj(f)) < Z R (V) (f(1)) < A(x) Z Vi (f7)-
30Then o o o

st Vp(i hf<x>fj<t>) - vp( lim )’ hJ-(x)f,-(r))

%2 j=m Jj=m

< A(x) lim Zwm A(x)Zv (f7) <A<x>Z|m||v,,
35 Jj=m Jj=m

27 Thus V), (Z;‘;m hj(x)fj(t)) — 0 as m — oo. Hence, for each x € [a, b],

38

- vp(Zhj(x)fj(z)) < co.
20 =1
41 Therefore 357, hj(x)f;(t) € BV, for each x € [a,b]. We remark that this result, in fact, is a

42 consequence of the completeness of BV,.
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COMPACT OPERATORS AND INTEGRAL EQUATIONS IN THE BV,, SPACE 7

Notice that, by Theorem 3 and Corollary 2,

2 b,

S (Z hj(X)fj(t))sz?(t)dg(t)

il @ \j=n+l

=< S mwroe v<g>+3{1+5<—+ )} (Z h <xm<r><,o<z>)v ()

7 j=n+1 J=n+l

T sl S s v<g>+3{1+5<—+ >}||«,o<t>||vp Zh(xmm Vil
10 J=n+l j=n+l

., Hence ‘fab(Zj.":nH hj(x)g;(t))e(t) dt‘ — 0 as n — oo. Observe that

(Zh(»c)mz))so(z)dg(z) Z [ maswewaso= [ (wa)fJ(r))so(r)dg(r)

j=n+1

%So

18 b&

e lim (Zh(x)fj(t))so(t)dg(t) /(Zhj(x)ﬁ(f))SD(l)dg(l)-
a \j=

19

20
21 o

2 The following lemma is proved by Abel’s transformation, see [1, Ch.2, p.365], which is crucial in
oy this paper.

% Lemma 2. Let {a;} be a sequence in a normed spaces S with norm || - ||s and {b;} a real-valued
% sequence such that .7 a; and 357, |bj1 — bj| exist. Thenlim; b, 3.77 a;b; exist and, for each
"m=1,2,...

2i

29

) > ajb; SszAZ|bJ—+1—bJ-|+ D ax

- j:m
31

eg where A = sup,, || Z;’:l ajlls and b=1im;j_b.

j=m k=m

3
Lemma 3. Let {fj} and {h;} be sequences of functions in BV, and g € BV, with p,q > 1 and
— + > 1. Suppose that ZJ 1 1 fillv, < oo and for each x € [a, b], Z;"zl hj(x) exists.

3 (i) Then,for eachx, there exists 0 < A(x) < co suchthat |hj(x)| < A(x) for each j and Z;‘;l hj(x)f(t)
37 exists for any x,t € [a,b].

% (ii) Let g € BV, and aj = fab fi(t)e(t)dg(t). Then Z;’;l | jp1 — | < oo and ij’:l hja; € BV),.

39

40 Proof. (i) By given condition, for each x, > P hj(x) exists. Hence there exists 0 < A(x) < co such
a1 that |h;(x)| < A(x) for each j. Apply Lemma 2 to two real-valued sequences with a; = h;(x) and
42 bj = f(t) we have ZF hj(x)f;(t) exists for any x,t € [a,b].
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(ii) First, by Theorem 3 and Corollary 2, we have

lajr1 —aj| =

b
/ i (0) — £ (1)dg (1)

1 1
< llelleoll fi+1 = FillVg (g) +3{1 +§(p—1+5)}||fj+1 = fillv, llellv, Vg ().

Hence 357 |aju1 —a;| < co.

For each x € [a, b], apply Lemma 2 to two real-valued sequences, a; = h;(x) and b; = a;, we have
Z;"zl hj(x)a; exists.

Now apply Lemma 2 to a real-valued sequence {a;} and a sequence {/;} in the normed space

[ fele[~]o|a]a]e]r]~

! with norm || - [|y,,, we have Z;":l hja; exists under norm || - [|y,. Thus { ;.‘:1 hjaj} is Cauchy under

12
13 |- llv,. Therefore, there exists ¢ € BV, such that HZ?ZI hjaj—y v

— r
14 o - ;

X hjaj e BV, m]
15

— 0 as n — oco. Therefore

E Theorem 7. Let { f;} and {h;} be sequences of functions in BV,, such that Z;’;l I fillv, < oo, for each
17 x € [a,b], 2;0:1 hj(x) exists and g € BV, with p,q > 1 and %+611 > 1. Let K,K; : (BVp, |- llv,) —
18 (BVp, |l llv,) be linear operators defined by

19

o o
o Kap)) = [ 1500 |o(01dg o).
— a \j=1

gand

“ o[

. (ko) = [ | 150 |erdg o).
- a j=1

o Then ||K,, — K|| — 0 as n — co. Furthermore K is continuous and compact.

ZE Proof. By Lemmas 1 and 3 (i), for each x,t € [a, b], Z;"zl hj(x)g;(t) exists and

29

o (Kg)(x) = / (Z hj(X)fj(t))<p(t)dg(t) = > i) / efidg =) hj(xaj,
31 a —1 i=1 a =1

?i ) J J J

33 Where a; = fa @(1) f;(1)dg(1). Thus (K - Kn)e(x) = 251,41 hj(x)a;.

s« Hence, (K -Kn)¢llv, = | X721 hja;llv,. By Lemma 3 (ii),

35

36 ”(K_Kn)(90)||vp—>0asn—>oo,

s, By the Banach-Steinhaus theorem (Theorem 5), K is continuous. Now, we shall prove that || K,, - K || —
55 0asn— oo, Recall that Z;"Zl |ojs1 —@j| <oo. Let @ =lim;_,j. Apply Lemma 2 to {a;}, where
a9 aj =hj withnorm ||-||y,, and b; = a}, use inequality (2), we have

40

a K=Kl =| > hjegl| < 2sup| el D lajmagal+| D | el
42 j=n+l Vp J k=1 vV, j=n+l k=n+1 v,

31 Jan 2024 18:25:26 PST
230601-Boonpogkrong Version 2 - Submitted to J. Integr. Eq. Appl.



Submitted to Journal of Integral Equations and Applications - NOT THE PUBLISHED VERSION
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1 Now we shall estimate Z;’f’:nﬂ |aj+1 — ;| and || in the above inequality. Since ||¢||v, =V, (@) + ¢l c>
» we have ||¢]|e < ll¢llv, and V), (¢) < [l¢|lv,. Then, by Theorem 3,

3

lajs — ;] =

b
/ i (1) - £ (1)dg (1)

1 1
< llellooll f+1 —fjlloqu(g)+3{1 +§(; + 5)}||fj+1 = fillv, llellv, Vg (g)

jole|~]o o]

1 1
< llellv, I fj+1 —fjllv,,Vq(g)+3{1 +§(]; + 5)}||fj+1 = fillv, llellv, Vg (8)

o

g4{1+g(l+l)}llwllvpllﬁ+l—fj“Vqu(g)
JZ

N

13

12 Note that @ =lim;_,c@; and @; = fab @(t) fj(t)dg(t). By Theorem 3 and Corollary 2,

15

— b

- fal = tim oy = tim | [ (0 f;(0)dg (0

o - 11 .

o < llgll lim ||f,~||oovq<g>+3{1+z;<l;+5>}||¢||vp Jim 17l Vy (2)
20 00 oY)

— 1 1

2 <lgllo Y. ||fj||oqu(8)+3{1+§(—+—)}||€0||vp Iy, Va ()

2% = P q =

al % 11 -

2 < ||<,o||v,,z||f,~||v,,vq<g>+3{1 +4<—+—>}||¢||VPZ 1£71lv, Ve (g)
25 j=1 P 4q j=1

26 1 1 hai

- s4{1+4<—+—>}||<,o||vpan,-nvpvq(g).

- P q =

21

? " Thus

30

o 1K = K)elly

. 1K = K)|| = sup —————

2. e lielly,

= J > 11

. <2sup|| Y| Y 4{1+§(—+—)}||fj+1—fj||V,,Vq(g)
35 J k=1 v, J=n+l P4

36 . oo

o 1 1

2 | > e 4{1+§(—+—)}Z||fj||V,,Vq(g)-

%8 k=t ly, P9 )53

39

‘E Hence ||K;, — K|| — 0 as n — oo. Note that each K, is a linear operator of finite rank. Hence each K, is
41 compact. Thus K is compact, i.e., for any bounded sequence {¢, } in BV, there exists a subsequence
42 {¢n, } such that {K¢p,, } is convergent in BV, under || - ||v,,. O
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1 Now we shall consider nonlinear operators. Let /(z,s) be a Carathéodory function from [a,b] XR
» to R, i.e., the function A(z,-) is continuous for all 7 € [a, b] and the function A(-,s) is measurable for
3 every s € R, [6, p. 349, Chapter 5]

4+ Let ¢ be a function defined on [a, b] and Hy a function defined on [a, b] and (He)(t) = h(t, ¢(1)).
‘5 The operator H is called a Nemytskii operator. In the following, we assume that the following Lipschitz
‘s condition holds for the function A(z, s), i.e., there exists a positive numbers « such that

— ) |h(t1,51) = h(t2,52)| < k(|1 = 12| + 51— 52])
9 for all t1,1h € [a,b] and all 51,52 € R.

% Lemma 4. Let H be a Nemytskii operator defined as above and ¢ € BV,,. Then

2 () Vp(He) <2x(|b—al+V,(9));
5 (i) |Hpllew < k(|b—al|+2||¢||+|h(to, M,)|), where tg € [a, b] is fixed and h(ty, M) = sup{h(to, s) :

1 —llelleo < s < llglloo}s
15 (iii) the operator H : (BV, || -|lv,) = (BVp, || |lv, ) and H maps a bounded sequence in (BVp, ||- |lv,)
6 to a bounded sequence in (BV,,|| - |lv,).

" Proof. By inequality (3), we get
18

19 |h(t1,0(11)) = h(t2, ()| < 2Pk (Jt1 = 2|7 + (1) — (12)|7) -

% Hence
. VE(h(t,0(1))) < 2PkP (V) (1) +Vy (0(1)))

23 <2PkP (Vf(t)+V5(s0(t)))

24 =P P (|b—a|p+Vl’,’(cp(t)))

25
s Thus, we have

Z Vp(h(t,0(1)) < (2PkP (Ib—al” +VE ((1))))

2 <2 ((lb=al”)7 +(VE (¢(1))

N E

=

30

a1 =2« (|b - al+V, (¢(1))) .

eg Therefore (i) holds. Thus (Hy)(t) = h(t,¢(t)) is in BV, if ¢ € BV,,. Furthermore {V,(Hep,)} is
33 bounded if {V),(¢,)} is bounded.

o On the other hand,

35

e |h (2, o(1))] < k(| =10l +]e(2) = ¢(t0)|) + | h(10, ¢(10))]

SZ Suppose ||¢]|eo < @, i.e., —a < ¢(t) < aandallt € [a, b]. Recall that for a fixed #, h(tg, -) is continuous

8 on [~a,a]. Thus, there exists M, € [~a, ] such that |A(to, ¢(19))| < |h(to, M,)|. Hence,
39
w® IHello < (16— al+2ll@lle) +[h(10, My)|

‘E Thus (ii) holds. Therefore, {||H¢nl|l} is bounded if {||¢,ll~} is bounded. Consequently, (iii)
42 holds. |
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Let k(x,1) = 252, hj(x) fj(1) and K : (BV), |- llv,,) = (BVp, |l - llv,,) be defined as in the Theorem

1
5 7, 1.e.,
3 b b
N (ko)) = [ ktenewago = [ his0 e,
i a a _]:1
5 Then the composite operator KH maps (BV),|| - |lv,) space to (BVp,||-Ilv,) space. Let ¢ € BV,
7 Then (KH)(¢) € BV, and for each x € [a,b]
8
— b
1% ((KH)(¢)) (x) = (K(Hp)) (x) = / k(x,0)h(1,¢(1)) dt.
a
" The composite operator K H is called a Hammerstein operator.
12
E Corollary 3. The nonlinear Hammerstein operator KH : (BVp, || - |lv,) = (BVp, || - llv,) given above

14 Is compact.

15

— Proof. By Lemma 4 (iii), the Nemytskii operator H maps every bounded sequence under I-llv, toa
- bounded sequence under || - ||ly,,. By Theorem 7, K is compact. Therefore the composite Hammerstein
5 operator KH from (BV),|-|lv,) to (BVp,||-|lv,) is compact. O

19

20 4. Integral equations

21 The Fredholm-Stieltjes integral equation of the second kind is an equation of the form
22

- b
e () = (x) +2 / k(e 1)p(1)dg (1),

% where ¢ : [a,b] > Rand k : [a,b] X [a,b] — R. The function k is known as the integral kernel.
26 In this section, let ¢, ¢ € BV, we first discuss the case when the integral kernel is separable, i.e.,

27 k(x,t) = h(x)f(r). By the standard method we can show that the integral equation (5) has a unique
8 solution. We shall write it down for easy reference. Suppose that &, f € BV, and g € BV,,.

29 The equation (5) becomes

30

— b
> o o(x) = (x) + / B £ (1) (0) dg (1)
33 =y (x)+Ah(x)a,

34

35 Where a = fa b f(t)e(t)dg (). Multiply f(x) the both side of the above equality, then integrate with
36 respect to g(x), we get
37

b b b
o / (1) f (x)dg (x) = / W () f (1) dg(x) + dar / B f () dg (x),

39

40 i.e.,

41

b b
- o= / U () £ (x)dg(x) + da / B f (o) dg (o).
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1 Note that by Theorems 3 and 6, fab W (x) f(x)dg(x)and fab h(x)f(x)dg(x)exist. If 1 fab h(x)f(x)dg(x) #
2 1, then we get

s
1= 7 h(o) f(x)dg (x)

Hence, from Equation (6),
[P w()f(0dg ()
1= [ h(o) £ (1)dg (1)

19 is the unique solution of a Fredholm-Stieltjes integral equation with separable integral kernel whenever
b

1‘? AL () f(1)dg(1) # 1.

;s For the case when /l[ab h(t) f(t)dg(t) = 1, the equation has no solution, if fab w(t)f(t)dg(t) #0.

. Leth;, fi€eBV, geBV, for j=1,2,...,n, and

14

@(x) =¥ (x) + Ah(x)a = ¢ (x) + Ah(x)

[ofe|~]ofo]s]e

15 n
o k(o)=Y hj(x) f(1)

17 J=1

1 for x,t € [a,b]. Then the corresponding Fredholm integral equation has properties analogous to the
19 above case.

20  Linear Fredholm equations and the Kurzweil-Henstock integral have been addressed in [5].

> Letus now return to the case in which the kernel k(x,t) = Z;"Zl hj(x)f;(t) and the operator K are

IKellv,
Telv,

??_the same as in Theorem 7. Lety € BV, and T = ¢ + AK ¢ for ¢ € BV,,. Let ||K|| = sup

23 .
— supremum is over all ¢ € BV,.
24

25 Theorem 8. Suppose there exists u > 0 such that IKellv, < ullellv, for each ¢, ie., ||K|| < u. For

, where

ZE any Awith0 < A < %1 there exists a unique fixed point ¢ € BV, i.e.,
27

b
% ¢(x) = (x) + UK ) (x) = 9//(X)+/l/ k(x,1)p(1)dg(t).

29
3E This solution ¢ is given by a convergent Neumann series ¢(x) = Y50, A'K'yr and l#llv, < ﬁ ey,
31 where K! = K and Kil// = K(Ki_lt//), i=2,3,4,...

32

4 Proof. ’Th’e proof is standard. Let ¢o(x) =¥ (x), ¢p(x) = +AK¢,—1(x),n=1,2,.... Then ¢, (x) =
v Zl'.’:ol A'K'¢(x),n=1,2,.... Since ||K|| < u, we have

% IK"Wllv, = IKK*"Wllv, <ullK"Yllv, <pllly, -

36
- Thus, for any m,n € N, we have

Zn: Ky

i=m+1

38

g ”¢n‘¢m”Vp:

39

< > Al =( > umf) 11l -

Vp i=m+1 i=m+l

40
41 Since 0 < Au < 1 by our assumptions, the sequence {¢, } is Cauchy under || ||y, . Hence lim;, 0 ¢, =

2 NigA'K'y exists in BV, if 0 < A < /ll
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Let ¢(x) = Z;’ioui(l(izp) (x). Then ¢(x) = lim,—c ¢n(x). By Theorem 7, K is || - ||y, -continuous.
From the iteration equation, ¢, (x) = +AK¢,-1(x) and the continuity of K, we have

Tim 6, (6) =0+ lim Koo ()
b
— g+ lim / k(1) bt (1) (1)

=¢'+/1/abk(x,t) (nlgiolo%-l(t))dg(t)

[ fele[~]o|o]a]e]r]~

b
: —y+a / kG (1)dg ().

12

13

o Thus, if 0 <1 < L, we can find ¢ € BV, such that ¢(x) =y +1 [ k(x.0)$(1)dg (o).

;s Now we shall prove that the fixed point ¢ is unique. Suppose that there are two fixed points, namely
6 ¢ and ®. Then ¢ =y +AK¢ and @ =y + AKD. Therefore ¢ — d = 1K (¢ —P) and

17

e ¢ = @llv, = AUK(¢-D)[lv, <AK][[[(¢=D)llv, <Aull(¢-DP)llv,.

19

% Hence (I-Aw)|l¢—®@|lv, <0. Recall that 1 —Au > 0. Itimply that [|¢ —®||y,, =0. Thus [|¢ - ®||y, =0.

! Consequently ¢ = ®. Therefore the fixed point ¢ is unique. O
22

2 Remark 1. We note that although y is difficult to locate. However, according to Theorem 8, if A is a
24 . .. . . .

= sufficiently small positive number, then a unique fixed point exists.

25

* Theorem 9 (Tychonoft’s theorem). [9, Theorem A] Let C be a convex subset of a locally convex
7 topological vector space. If T is a continuous operator which maps C into a compact subset of C, then
% T has a fixed point in C.

29

* Theorem 10. Let Ty =y +A(KH)p, where KH is given before Corollary 3. Assume that € BV,
31 _
el M) < g and ||K|| < 1, 0 < A< —l. Then T: (BV,,,||-lv,) = (BV,, |l -Ilv,) has a

32 Ty v, u(p+ar)

33 fixed point.

34

35 Proof. By Lemma 4 (i) and (ii), we have

®

7 I1Hellv, =Vp(He) +|Hellw < 3k|b—al+2kll¢llv, +|h(to, My)].
38

¥ Since K is continuous, we have

40

“

o |KHgllv, < IKIlIHg v, < 1K (316 = al +2xl¢lv, + A0, My)])
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Let C={¢p € BV, :|l¢llv, <2||¢Ilv,}. Then C is convex and bounded. For every ¢ € C, we have

ITelly, < UKDy, +I¥ly,
< 1K (316 = al +2«lglly, +(to. M + 1 Iy,

< A (3k1b = al + 4l v, + (1o, Mag) 1) + [ v,

[ole~]o|o]a]e]r]~

3k|b —al| +|h(ty, May)|
:/l,ulllllllv,,( MVO 2¥ 4K)+||w||v,,
10 P
— 1
11 -
" < M(ﬁ+4k)ullwllvp (B+4) +l¥lly,

w

=2l¢llv, -

4

15

s Then TC € C. T is compact since KH is compact. Thus TC is compact. Hence, by Tychonoff’s
- theorem, 7" has a fixed point in C. O

18
1o Remark 2. We note that although W is difficult to locate. However, according to Theorem 10, if

20 A is a sufficiently small positive number, T : (BVp, || - |lv,,) = (BV), |l -|lv,) has a fixed point.
21

22
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